INTERIM PEDRICKTOWN SITE GROUP **217** MAS **EXISTING** LANDFILL PHASE II 49R2 CER EVAL ICAL MEMORAN NL INDUSTRIES, INC. SUPERFUND SITE PEDRICKTOWN, NEW JERSEY

PS

BR

Prepared By:

GEOSYNTEC CONSULTANTS

10015 Old Columbia Road, Suite A-200

Columbia, Maryland 21046

Project Number ME0015-15 January 2000

INTERIM PEDRICKTOWN SITE GROUP

PHASE II GROUNDWATER EVALUATION TECHNICAL MEMORANDUM

NL INDUSTRIES, INC. SUPERFUND SITE PEDRICKTOWN, NEW JERSEY

Prepared By:

GEOSYNTEC CONSULTANTS 10015 Old Columbia Road, Suite A-200 Columbia, Maryland 21046

> Project Number ME0015-15 January 2000

Interim Pedricktown Site Group

PHASE II GROUNDWATER EVALUATION TECHNICAL MEMORANDUM

NL Industries, Inc. Superfund Site Pedricktown, New Jersey

Prepared by

10015 Old Columbia Road, Suite A-200 Columbia, Maryland 21046

Project Number ME0015

19 January 2000

1.	INT	INTRODUCTION			
	1.1	Overview	1		
	1.2	Summary of Results and Recommendations from Phase I Groundv Evaluation			
	1.3	Summary of Phase II Groundwater Evaluation			
•	1.4	Issues Raised During the Aquifer Test			
2.	PRO	JECT BACKGROUND	4		
	2.1	Overview	4		
	2.2	Site History	4		
	2.3	Sources of Impacts to Groundwater and Distribution of Constituents	5		
	2	2.3.1 Lead Reclamation	5		
	2	2.3.2 Other Possible Sources	6		
3.	FOR	MER SEPTIC BED EVALUATION	8		
	3.1	Overview	8		
	3.2	Field and Laboratory Procedures	8		
	3.3	Results of Soil Evaluation	9		
	3.4	Results of Groundwater Evaluations	10		
4.	LANDFILL SITING EVALUATION				
	4.1	Overview	11		
	4.2	Methods	11		
	4.3	Results	12		
5.	WEL	L INSTALLATION	14		

	5.1	Ove	rview	14
	5.2	Site	Lithology	14
	5.3	Mon	nitoring Well Installation	15
	5.4	Pum	ping Well and Installation	16
6.	SOI	L SAM	1PLING	18
	6.1	Ove	rview,	18
	6.2	Soil	Sample Analysis	18
7.	GRO	DUND'	WATER SAMPLING	20
	7.1	Ove	rview	20
	7.2	Sync	optic Water-Level Measurements	21
	7.3	Field	d Methods and Field Parameter Monitoring	21
		7.3.1	Preparation for Sampling	21
		7.3.2	pH Measurement	22
		7.3.3	Specific Conductance	23
		7.3.4	Reduction-Oxidation (Redox) Potential	23
		7.3.5	Dissolved Oxygen	23
		7.3.6	Turbidity	24
	7.4	Labo	oratory Methods	24
	7.5	Labo	oratory Results	25
		7.5.1	Overview	25
		7.5.2	Volatile Organic Compounds (VOCs)	25
		7.5.3	Inorganics	27
	7.6	Qual	ity Assurance/ Quality Control	30
	4.*.	7.6.1	Quality Assurance/Quality Control Samples	30
			•	

	7.6.2	Data Validation	30
8.	PRIVATE	E WELL SAMPLING	31
	8.1 Ove	erview	31
	8.2 Res	sults	31
	8.3 Eva	aluation of Results	32
9.	AQUIFE	R TEST	33
	9.1 Ove	erview	33
	9.2 Pro	cedures	34
	9.2.1	Ambient Water-Level Monitoring	34
	9.2.2	Step Test	34
	9.2.3	Constant-Rate Test	35
	9.3 Eva	aluation and Results	35
	9.3.1	Hydraulic Analysis	35
	9.3.2	Chemical Analysis	37
	9.3.3	Anticipated Extraction of Lead and Cadmium	
10.	CAPTURE ZONE MODELING		
	10.1 Ove	erview	39
	10.2 Gro	oundwater Flow Model	40
	10.2.1		40
	10.2.2		40
	10.2.3	Aquifer Parameters	40
	10.2.4	Boundary Conditions	41
	10.2.5	Non-Pumping Simulation	42

		10.2.6	Simulation	42
		10.2.7	Capture-Zone Simulations	42
11.	GEO	CHEM	IICAL EVALUATION	44
	11.1		view	
	11.2	Analy	yses	44
	11.3	Gene	ral Geochemical Parameters	46
	11.4	Perm	anence of Geochemical Reactions	47
	11.5	Soil S	Sorption Capacity	47
12.	FAT	E AND	TRANSPORT MODELING	49
	12.1	Overv	view	49
	12.2	Trans	port Simulations	49
	12.3	Resul	ts	50
13.	GRO	UNDW	VATER RISK CONSIDERATIONS	53
	13.1		view	
	13.2	Actua	al Risk Potential	53
	13.3		for Remediation	
14.	CONCLUSIONS			55
	14.1	Overv	/iew	55
	14.2	Projec	ct Background and Historic Data	55
	14.3	Forme	er Septic Bed Evaluation	55
	14.4		ndwater and Soil Samples	
	14.5		er Test	
	14.6		re Zone Evaluation	
	14.7	Geoch	nemical Evaluation	57
	14.8	Fate a	nd Transport Modeling	57

		Groundwater Risk Considerations
15.	RECO	MMENDATIONS61
16.	REFER	RENCES63
TAE	BLES	
Tabl	e 1-1	Remedial Action Objectives (RAOs) for Groundwater
Tabl	e 1-2	Scope of Work for Phase II Groundwater Evaluation
Tabl	e 2-1	Lead and Cadmium Mass Balance
Tabl	e 2-2	Constituents of Concern in Groundwater
Tabl	e 3-1	Summary of Laboratory Analytical Results - Former Septic Bed
		Evaluation
Tabl	e 3-2	Concentrations of Radiological Parameters in Soil – Former Septic Bed Evaluation
Tabl	e 5-1	Rationale for New Monitoring Well Locations and Depths
Tabl	e 5-2	Summary of New Well Construction Details
Table	e 5-3	Summary of Soil Sample Analyses and Test Methods
Table	e 6-1	Concentrations of Total Lead in Soil
Table	e 6-2	Concentrations of Volatile Organic Compounds in Soil
Table	e 6-3	Concentrations of Radiological Parameters in Soil
	e 6-4	General Chemical Analysis of Soil
Table		Summary of Mineralogical Testing Results
Table		Summary of Groundwater Sampling Locations and Analyses
Table		Monitoring Well Construction Data
Table		Concentrations of Lead and Cadmium in Groundwater
Table	e 7-4	Summary of Field Measurements
Table	e 7-5	Lead Concentrations and Turbidity Values
Table	e 7-6	Laboratory Methods for Analysis of Groundwater
Table	27-7	Concentrations of Volatile Organic Compounds in Groundwater

Table 7-8	Concentrations of Gross Radiological Parameters in Groundwater
Table 7-9	Concentrations of Radiological Parameters in Groundwater
Table 7-10	General Chemical Analysis of Groundwater
Table 7-11	Historical Groundwater Quality
Table 7-12	Concentrations of Constituents Exceeding Remedial Action Objectives]
Table 8-1	Concentrations of Lead and Cadmium in Private Well Samples
Table 9-1	Groundwater Levels Prior To and After Completion of the Pumping Test
Table 9-2	Summary of pH and Turbidity During Aquifer Test
Table 9-3	Summary of Volatile Organic Compounds Detected During Aquifer Test
Table 9-4	Summary of Lead and Cadmium in Groundwater Extracted During
•	Aquifer Test
Table 9-5	Summary of General Groundwater Chemistry During Aquifer Test
Table 9-6	Estimated Performance of Pump and Treat Technique
Table 11-1	Mineral Analysis by X-Ray Diffraction
Table 11-2	Summary of Lead and Cadmium Soil Concentrations and their Soil
	Phase Associations
Table 11-3	Summary of Selected Soil Properties
FIGURES	
Figure 2-1	Site Plan
Figure 3-1	Septic Bed Boring Location Plan
Figure 4-1	Landfill Siting Evaluation Sampling Plan
Figure 4-2	Site Subsurface Model - View From North and East
Figure 5-1	Monitoring Well Location Plan
Figure 5-2	Site Subsurface Model - View From South and West
Figure 7-1	Phase II Groundwater Sampling Plan
Figure 7-2	Potentiometric Surface Map – 16 December 1999
Figure 7-3	pH of Groundwater – 1998
Figure 7-4	pH of Groundwater – 1997
Figure 7-5	pH of Groundwater – 1983
Figure 7-6	Total Lead Concentrations in Unconfined Aquifer – 1998
Figure 7-7	Total Lead Concentrations in Unconfined Aquifer – 1997

Figure 7-8	Total Lead Concentrations in Unconfined Aquifer - 1989/1990
Figure 7-9	Total Lead Concentrations in Unconfined Aquifer – 1988
Figure 7-10	Dissolved Lead Concentrations in Unconfined Aquifer – 1983
Figure 7-11	Geologic Cross-Section A-A' (1998)
Figure 7-12	Geologic Cross-Section A-A' (1983)
Figure 7-13	Total Cadmium Concentrations in Unconfined Aquifer – 1998
Figure 7-14	Total Cadmium Concentrations in Unconfined Aquifer – 1997
Figure 7-15	Dissolved Cadmium Concentrations in Unconfined Aquifer – 1989
Figure 7-16	Dissolved Cadmium Concentrations in Unconfined Aquifer – 1988
Figure 9-1	Well Location Plan for Aquifer Test
Figure 9-2	Pre-Test Water Level Changes at Well OW
Figure 9-3	Post-Test Water Levels at Well PW
Figure 9-4	Post-Test Water Levels at Well PW (partial)
Figure 9-5	Step-Test Hydrograph at Well PW
Figure 9-6	Potentiometric Surface Shallow Unconfined Aquifer (pre-pumping
Figure 9-7	Hydrograph at OW (raw data)
Figure 9-8	Drawdown and Barometric Pressure vs. Time
Figure 9-9	Potentiometric Surface Shallow Unconfined Aquifer (pumping)
Figure 9-10	Drawdown vs. Time at Well KD
Figure 9-11	Neuman Analysis at Well OW
Figure 9-12	Neuman Analysis at Monitoring Well KD
Figure 9-13	Neuman Analysis at Monitoring Well 28
Figure 9-14	Total Lead Measured in Effluent During Aquifer Test
Figure 9-15	Dissolved Lead in Effluent During Aquifer Test
Figure 9-16	Total Cadmium in Effluent During Aquifer Test
Figure 9-17	Dissolved Cadmium Measured in Effluent During Aquifer Test
Figure 10-1	Model Grid
Figure 10-2	MODFLOW Simulated Water Table (non-pumping)
Figure 10-3	Calibration Graph (non-pumping)
Figure 10-4	MODFLOW Simulated Water Table (non-pumping)
Figure 10-5	Calibration Graph (pumping)
Figure 10-6	5 Year Capture Zone Simulation - Four Wells
Figure 12-1	Simulated Lead Concentration in 1989

(continued)

Figure 12-2	Simulated Cadmium Concentration in 1989
Figure 12-3	Simulated Lead Concentration in 1998
Figure 12-4	Simulated Cadmium Concentration in 1998
Figure 12-5	Simulated Cadmium Concentration in 1998 (with pumping)

APPENDICES

Appendix A	Lithologic Logs
Appendix B	Landfill Siting Evaluation Geotechnical Analyses
Appendix C	Core Laboratories Report
Appendix D	ToxScan, Inc. Laboratory Report
Appendix E	Groundwater Sampling Logs
Appendix F	EPA Laboratory Qualifiers
Appendix G	Raw Transducer Data
Appendix H	Datalogger Tables
Appendix I	Water Level Indicator Data Tables

1. INTRODUCTION

1.1 Overview

In this memorandum, the results of the Phase II Groundwater Evaluation for the NL Industries site in Pedricktown, New Jersey is presented. This evaluation was performed by the Interim Pedricktown Site Group (Group) in accordance with the document entitled, Remedial Design Work Plan for the NL Industries, Inc. Site [GeoSyntec, July 1997](RD Work Plan). As described in the RD Work Plan, the groundwater evaluation is to be performed in two phases, each progressively building on the results of the Remedial Investigation (RI) performed in 1990 by O'Brien & Gere [O'Brien & Gere, 1990] and an evaluation of groundwater performed in 1983 by Geraghty & Miller [Geraghty & Miller, 1983]. The Group's objectives in performing these evaluations were to enhance the understanding of the site hydrogeology and to obtain sufficient data to design a remedy for groundwater.

The results of the first phase of the groundwater evaluation were reported in the document entitled, *Phase I Groundwater Evaluation Technical Memorandum* [GeoSyntec, June, 1998] (Phase I Memorandum). A summary of the results and recommendations provided in the Phase I Memorandum are provided in Section 1.2 of this report. The activities and findings of the second phase of the groundwater evaluation are presented in Sections 3 through 14 of this document. To provide relevant background for the issues addressed during the Phase II evaluation, a history of the site is presented in Section 3 along with a summary of the sources of constituents that have impacted groundwater quality.

1.2 <u>Summary of Results and Recommendations from Phase I Groundwater</u> Evaluation

The objectives of the first phase of the groundwater evaluation were to: (i) define current groundwater quality at the site; (ii) evaluate groundwater as a possible pathway for the transport of constituents; (iii) identify, if possible, remedial alternatives for groundwater that are more effective than the remedy selected by the United States Environmental Protection Agency (EPA); and (iv) define the scope of the Phase II groundwater evaluation. To accomplish these objectives, the Group obtained groundwater samples from 19 monitoring wells and surface-water samples from five locations. The samples were analyzed for organic and inorganic constituents. The

results of the laboratory analysis of these samples were presented in the Phase I Memorandum.

Based on the data in the Phase I Memorandum, it was concluded that: (i) the quality of groundwater at the site had improved since secondary lead reclamation operations at the site ceased in 1982; (ii) the inorganic constituents in groundwater were not mobile, and organic constituents were detected infrequently and at low concentrations; therefore, there is not a complete off-site exposure pathway; and (iii) based on these results, refinements to the EPA-selected remedy may be needed to address current, rather than past (as reported in the RI), groundwater conditions.

In the Phase I Memorandum, it was stated that the quality of groundwater at the site had improved since monitoring began in 1983. This statement was based on the observed decrease in the concentrations of constituents detected in groundwater samples obtained from monitoring wells during five monitoring events between 1983 and 1997. It was also stated that constituents existed in a stationary zone (i.e., "zone of impact") and that while constituent concentrations had decreased, no change in the location of the zone of impact was observed. Furthermore, because the zone of impact had remained stationary through the monitoring period, it was concluded that no significant transport of constituents had occurred (i.e., constituents are immobile). Therefore, it follows that groundwater is not a significant pathway for transport of constituents of concern. Based on these observations, the Group believed that Remedial Action Objectives (RAOs) for groundwater could be achieved without pumping and treating groundwater. The RAOs for groundwater at the site are provided on Table 1-1.

As a result of the improvement in groundwater quality that had occurred without active remediation, the Group proposed in the Phase I Memorandum to evaluate the causes of the naturally-occurring improvement. In addition, in its comments to the Phase I Memorandum, EPA requested that additional data be obtained to further characterize the site hydrogeology and geochemistry. The Group and EPA agreed that the Group would implement a Phase II groundwater evaluation program that included installation of new monitoring wells, evaluation of site geochemistry and hydraulics, and evaluation of the condition of the former septic beds.

1.3 Summary of Phase II Groundwater Evaluation

The Phase II groundwater evaluation included: (i) the installation of monitoring wells; (ii) sampling of groundwater from on-site monitoring wells and off-site residential wells; (iii) assessment of the former septic beds as a potential source of contamination; (iv) aquifer testing; (v) evaluation of the likely capture zone of groundwater extraction wells, if they were installed; (vi) geochemical evaluation of site subsurface soils; and (vii) groundwater flow and transport modeling. Also, a subsurface investigation was performed as part of a landfill siting evaluation. Although an Explanation of Significant Differences (ESD) issued by EPA eliminated the need to construct a landfill on the site, the data obtained during the landfill siting evaluation enhanced the site subsurface database and are included herein.

The results of the Phase II groundwater evaluation generally confirmed the results of the Phase I evaluation and support the conclusion that groundwater quality consistently has improved and that there is no exposure pathway for groundwater between on-site constituents and possible off-site receptors. Furthermore, the results of the aquifer test performed during the Phase II groundwater evaluation indicate that the pump-and-treat remedy may be technically impractical to implement (see Section 1.4). Therefore, as stated in the Phase I Memorandum, in addition to being unwarranted for addressing current groundwater conditions, it may not be possible for the pump-and-treat remedy to meet the RAOs identified in the ROD.

1.4 <u>Issues Raised During the Aquifer Test</u>

During the aquifer test, data were collected that strongly suggest that a pump-and-treat remedy will be incapable of achieving the RAOs. The chemical data were obtained by analyzing samples of the groundwater. The analyses show that, although the extraction well was installed in the area at the site containing the greatest concentrations of constituents of concern, the constituents (especially lead and cadmium) were not prevalent in the extracted groundwater. Furthermore, the concentrations were either below the level of detection or, when they were detected, declined rapidly during pumping. These results indicate that removal of a significant mass of constituents (particularly lead and cadmium) from the aquifer is impossible. Therefore, the use of the pump-and-treat remediation technique at the site is impractical, as discussed further in Section 9.

2. PROJECT BACKGROUND


2.1 Overview

In this section, the background of the Phase I and II groundwater evaluations is presented. First, in Section 2.2, the history of the site is described. Then, in Section 2.3, the sources of constituents that have impacted groundwater quality are discussed.

2.2 Site History

The NL Industries site is located on Pennsgrove-Pedricktown Road, in Pedricktown, New Jersey. A site plan is provided as Figure 2-1, which depicts the location and layout of the site. The site was used by several organizations for the reclamation of lead. Lead reclamation involved the secondary smelting of lead from recycled material. A primary source of lead in recycled material for secondary smelting at the site was lead-acid batteries. The initial step in reclaiming lead from lead-acid batteries involved breaking the battery casings. At the NL site, as well as most other lead reclamation facilities, battery casings were broken in various locations and, at times, in a poorly controlled manner. For example, spent batteries were occasionally stockpiled at several outdoor locations at the site, and a bulldozer was sometimes driven over the batteries to crush the casings. Battery casings were also broken within the former secondary smelting facility building.

After the battery casings were broken, battery acid drained from the casings and the lead plates were removed for secondary smelting. While breaking some of the battery casings, battery acid was inadvertently released to the land surface. Lead and other constituents that have been observed in groundwater at the site were temporarily entrained in the battery acid, which flowed vertically down through the soil to groundwater. The manner in which this activity impacted groundwater is discussed in the following section.

2.3 Sources of Impacts to Groundwater and Distribution of Constituents

2.3.1 Lead Reclamation

Battery acid that was inadvertently released during the lead reclamation process is the primary source of inorganic constituents (i.e., lead and cadmium) in groundwater at the NL site. The released battery acid entrained constituents from the batteries, as well as material that the acid contacted after it was released from the battery casings. The acid flowed downward through the soil to the groundwater table, resulting in localized decreases in ambient groundwater pH and release to groundwater of the constituents contained in the acid.

During the period when battery breaking was performed, an intermittent source of battery acid and constituents affected the groundwater at the site. The limited spread of acid and entrained constituents into the aquifer proceeded gradually until it reached a dynamic equilibrium with the aquifer material and groundwater. The pH of the acid and acidic groundwater was ultimately buffered by the geochemical interaction with aquifer material (this is described in more detail in Section 11 of this document). Through buffering, the pH of the groundwater was raised, which resulted in a decrease in the solubility of the inorganic constituents and a decrease in constituent mobility. Also, geochemical reactions occurred that resulted in the sorption and precipitation of constituents. The spread of constituents in groundwater was limited by naturally occurring geochemical reactions. The geochemical interaction of acid and acidic groundwater with the aquifer material is described in greater detail in Section 11.

When secondary smelting operations ceased at the site in 1982, the release of battery acid also ceased. Since then, groundwater quality has markedly improved, as demonstrated by the results of five monitoring events since 1983 that show the zone of groundwater impact to be stationary and concentrations of constituents within the zone to be sharply declining. With each monitoring event, a smaller and smaller area has been observed to be affected and groundwater quality within the zone of impact has been observed to be improving. This is illustrated in more detail in Section 7 of this memorandum.

The total mass of inorganic constituents in the subsurface has likely remained constant since operations ceased in 1982. However, the mass of constituents in groundwater has decreased, while the mass of constituents sorbed to the aquifer

material has increased. The transfer of constituent mass from groundwater to aquifer material occurs naturally, and is desirable. On Table 2-1, the change in mass of lead and cadmium that has occurred in groundwater is presented.

The average concentrations of lead and cadmium and the volume of groundwater affected were used to calculate the mass of lead and cadmium in groundwater. As summarized on Table 2-1 and described in Section 11, the mass of constituents in groundwater is much smaller than the total sorption capacity of the aquifer material (i.e., the mass of constituents that can be permanently sorbed to the subsurface soils. Also, the RAOs for constituents in soil are sufficiently high that if all of the constituent mass is transferred from groundwater to the soil, the resulting change in the concentrations of the constituents in soil will be only a few parts per million and the final concentrations of lead and cadmium in soil will be within the range of background concentrations [Pais and Jones, 1997]. The change in lead and cadmium concentrations in soil was calculated using the estimated mass of lead and cadmium in groundwater and the estimated mass of soil in the zone of impact.

2.3.2 Other Possible Sources

The EPA included constituents other than lead as constituents of concern (COCs) at the site. These additional COCs are identified on Table 2-2, and include both organic and inorganic parameters. Possible sources of these constituents are the diesel fuel storage tanks and the Conrail rail line, as described below. No investigations have been performed, as part of this evaluation, to evaluate these potential sources of COCs. Diesel fuel storage tanks were operated at the site. It is possible that some of the COCs originated from the operation of diesel tanks. Furthermore, the adjacent site located to the east was formerly operated by Exxon. Currently, groundwater at that site is monitored by Exxon and constituents related to fuel and solvents have been documented to be in the groundwater at that site through an on-going monitoring program. The former Exxon site is upgradient from monitoring wells 7, 12 and 19 and near monitoring wells 24, JS, JD.

During the performance of field activities, GeoSyntec personnel observed rail tanker cars in the Conrail line that were temporarily stopped (at times, overnight) near the site and upgradient from monitoring wells 7, 12 and 19. The rail cars were labeled as containing the volatile organic compound (VOC), vinyl chloride. Vinyl chloride was detected in groundwater samples obtained from monitoring wells 12 and 24. Vinyl

chloride also strongly influences the estimation of possible risks posed by groundwater, as described in Section 13.

3. FORMER SEPTIC BED EVALUATION

3.1 Overview

A former septic bed is located in the southwest corner of the site (Figure 3-1) The former septic bed is composed of two mounds. Both mounds, the east and west mound, are composed of soil that is mounded approximately 10 feet above the surrounding land surface. As requested by the EPA, GeoSyntec performed an investigation of the former septic bed to evaluate its potential for impacting groundwater. For the investigation, one soil boring was drilled through each mound to the water table. From each soil boring, one sample of soil was obtained and chemically analyzed. The results of this evaluation were presented in the report entitled, "Final Design Report, Remedial Design for Soil and Sediment, NL Industries, Inc. Superfund Site" [GeoSyntec, November 1999], and they are reiterated in the remainder of Section 3. Also, two monitoring wells were installed adjacent to the former septic bed and sampled to investigate groundwater quality in the immediate vicinity of the former septic bed. The results of both the soil quality and groundwater quality evaluations performed for the former septic bed are provided below.

3.2 Field and Laboratory Procedures

Two soil borings were drilled in the former septic bed using hollow-stem auger (HSA) drilling techniques. One soil boring, SBE (Soil Boring East), was drilled through the center of the east mound; and one soil boring, SBW (Soil Boring West), was drilled through the center of the west mound (Figure 3-1).

The soil borings were drilled by Hardin-Huber, Inc. (HHI) of Baltimore, Maryland using a Mobil-B57 all terrain vehicle (ATV) drill rig and 4.25-inch (10.8-cm) inside diameter augers. Split-spoon soil samples were obtained continuously throughout each boring and descriptions of the soils that were encountered were logged by the GeoSyntec geologist. The geologist also screened each soil sample using a Rae System Minirae® photoionization detector (PID) to evaluate whether or not VOCs were present in the subsurface materials that were encountered. The soil descriptions and PID readings obtained during the investigation are provided in the lithologic logs presented in Appendix A.

To evaluate the subsurface soil quality in the former septic bed, one soil sample was obtained from each soil boring and submitted for laboratory analysis. In accordance with the SAMP [GeoSyntec, 1998], each sample was intended to be obtained from a depth at which the greatest PID readings were obtained. Because no elevated PID readings were observed, and the soil samples contained no visible staining, the samples were obtained from a depth of 10 to 14 feet (3.0 to 4.3 m) below the ground surface (bgs) at the top of the mounds. This sampling interval corresponds to the depths between adjacent ground elevations and the water table. Each sample was collected in accordance with the SAMP and Quality Assurance Project Plan (QAPP) [GeoSyntec, 1998] and was submitted to Quanterra Laboratories Inc., of Pittsburgh, Pennsylvania, (Quanterra) for laboratory analysis. The samples were analyzed for low-level VOCs, base/neutral/acid (BNA) extractable compounds, priority pollutant metals, total cyanide, and radiological parameters.

3.3 Results of Soil Evaluation

The subsurface soil encountered during drilling consisted of fill material (sand and gravel) transitioning to uniform sands at a depth of approximately 10 feet (3 m) bgs. Split-spoon samples collected from each boring were screened for organic vapors using a PID. No organic vapors were detected in any of the samples obtained by GeoSyntec.

The results of the laboratory analyses of the soil samples are summarized on Table 3-1. As shown on Table 3-1, a low concentration (19 micrograms per kilogram (μ g/kg)) of acetone was reported to be present in the sample obtained from SBW. No other VOCs were reported to be present in the samples. Also, as shown on Table 3-1, bis (2 ethylhexyl) phthalate was estimated to be present at concentrations of 380 micrograms per kilogram (μ g/kg) in the sample from SBW and 61 μ g/kg in the sample from SBE. No other BNA compounds were detected in the soil samples.

Low concentrations of arsenic, beryllium, chromium, copper, lead, nickel, and zinc were detected at concentrations above the laboratory reporting limit in both soil samples. Antimony was detected at a low concentration in the sample obtained from boring SBE. The only inorganic constituent detected for which there is an RAO is lead. Lead was detected at levels that were an order of magnitude below the RAO of 500 ppm. Each of the inorganics was detected at concentrations that fall within the expected range of background concentrations [Shacklette and Boerngen, 1984].

As shown on Table 3-2, radiological parameters were detected at low concentrations above the laboratory reporting limits. The radiological results for each of the analytes are consistent with the results of other soil samples obtained at the site. Furthermore, detectable levels of naturally occurring radiological parameters may be expected in the State of New Jersey [O'Brien and Gere, 1990].

3.4 Results of Groundwater Evaluations

Two monitoring wells, Wells 31 and 32, were installed adjacent to the former septic bed. The installation procedures for the wells are described in detail in Section 5. The results obtained from the chemical analysis of the groundwater samples obtained from monitoring wells 31 and 32 are described in Section 7. As stated in Section 7, groundwater samples from monitoring wells 31 and 32 were analyzed for: (i) total and dissolved lead and cadmium; (ii) VOCs; and (iii) radiological parameters.

Neither lead nor cadmium were detected in the groundwater samples from Wells 31 and 32. Also, no VOCs were detected at concentrations above the contract required detection limit (CRDL). The results of the analyses for radiological parameters indicated that the concentrations of gross alpha and beta in monitoring well 31 exceeded the RAOs. However, the concentrations of gross alpha and beta measured in the groundwater sample from monitoring well 32, which is located within 10 feet of monitoring well 31, and screened in a slightly deeper portion of the same water bearing zone, are lower than those reported for the sample from monitoring well 31. No radiological parameters were detected in soil samples from the former septic bed (Table 3-2), indicating that the former septic bed is not a source for these parameters. However, due to the variability in the concentrations of these constituents in monitoring wells 31 and 32, it is possible that a localized source of radiological parameters (e.g., naturally occurring source minerals) exists near the former septic bed.

Overall, the results of the chemical analysis of soil and groundwater samples did not identify the former septic bed as a significant source of the constituents found in groundwater at the site.

4. LANDFILL SITING EVALUATION

4.1 Overview

GeoSyntec performed a subsurface investigation as part of activities related to the siting and design of a landfill at the site. The investigation was performed in accordance with New Jersey Administrative Code (NJAC) 7:26-2A. After the landfill site evaluation was performed, the EPA issued an ESD allowing the off-site disposal of remediation wastes generated from the remedial action for the site, therefore, eliminating the need to construct a landfill at the site. The results of the landfill siting evaluation are presented in this document, because the lithologic and hydraulic data obtained in the investigation are relevant to the evaluation of groundwater at the site.

Although construction of an on-site landfill was not included in the final design for the soil and sediment remediation, the information obtained from these soil borings was used during the Phase II groundwater evaluation to refine the three dimensional lithologic model of the site, confirm the presence of the confining clay layer in the area, and quantify the hydraulic conductivity and various geotechnical and geochemical properties of the clay layer. The methods used to complete the soil borings and the information obtained from each boring is provided below.

4.2 Methods

GeoSyntec drilled four soil borings in the area east of the current NL Industries, Inc., Landfill (Figure 4-1). On 21 and 22 July 1998, Hardin-Huber, Inc. of Baltimore, Maryland, (HHI) drilled three shallow (i.e., 25-feet deep) and one deep (i.e., 52-feet deep) soil borings in the area east of the existing NL Industries, Inc., landfill and north of the Conrail right-of-way as part of the landfill siting evaluation. As shown on Figure 4-1, the shallow soil borings were designated LFE-1, LFE-2, and LFE-3, and the deep soil boring was designated LFE-4. The soil borings were drilled using a Mobil B-57 all-terrain vehicle (ATV) drill rig equipped with 4.25-inch inside diameter (ID) hollow stem augers. During the drilling activities, standard penetration tests (SPT) were performed continuously using a 2-inch diameter split-spoon sampler. A GeoSyntec geologist evaluated the contents of each split spoon sample and recorded the lithology of each boring in the lithologic logs provided in Appendix A.

To evaluate the various physical and chemical properties of the clay confining unit in the proposed landfill area, GeoSyntec obtained undisturbed soil samples at soil boring location LFE-4. Samples of clay were obtained using Shelby tubes at two-foot intervals from a depth ranging from 34-feet to 40-feet. The sample obtained from the 34-feet to 36-feet interval was submitted to GeoSyntec's Geomechanics and Environmental Laboratory in Alpharetta, Georgia for analysis. The sample was analyzed for hydraulic conductivity in accordance with the American Society for Testing and Materials method D 5084 (ASTM D 5084), as-received moisture content by ASTM D 2216, Specific Gravity by ASTM D 854, and Cation Exchange Capacity using EPA method 9081. HHI abandoned each borehole by tremie-grouting from the bottom of the borehole to the land surface using a bentonite cement mix.

4.3 Results

As shown in Appendix A, a clay layer consisting of a red and gray or tan mottled clay was identified in each of the borings drilled during the landfill siting evaluation, except LFE-3. LFE-3 was terminated at a depth shallower than the depth of the clay layer. The thickness of the clay layer was at least two feet thick at soil boring location LFE-2 and at least 8-feet thick at LFE-1. The clay layer ranged in depth from 18-feet bgs at LFE-1 to 32 -feet bgs at LFE-4. These depths are consistent with the depths encountered in a previous investigation [GeoSyntec, 1983], in which the clay layer was encountered between 20 and 40 feet bgs.

As shown in Appendix B, the results of the geotechnical analysis of the clay indicated the following: (i) hydraulic conductivity of the sample was 8.0×10^{-8} centimeters per second (cm/s); (ii) the as-received moisture content of the sample was 16.7 percent; (iii) the specific gravity of the sample was 2.66, and; (v) the cation exchange capacity of the sample was 6.1 milliequivalents per gram (meq/g).

In comments provided by the EPA on the results of the *Phase I Groundwater Evaluation Technical Memorandum*, the EPA indicated that it desired a better understanding of the lithology of the site. The EPA stated that drilling logs for monitoring wells 7 and 12 do not indicate clay to be present between the unconfined and the first confined (semi-confined) aquifer. Although requested, EPA was not able to provide a lithologic log for monitoring well 19. In the drilling logs for monitoring wells 7 and 12, the first occurrence of clay was reported at a depth of approximately

50 feet bgs. During the installation of soil borings as part of the landfill siting evaluation, clay was consistently observed at depths ranging from 18 to 32 feet. The discrepancy between the lithologic logs of monitoring wells 7 and 12 and the results of the landfill siting evaluation indicates that if the clay is in fact absent between the unconfined and semi-confined aquifer, its absence is limited to a small area near monitoring wells 7 and 12. It is also possible, that the clay is present at monitoring wells 7 and 12, but it was simply not included in the drilling logs for monitoring wells 7 and 12. A sample of the clay was found to have a vertical hydraulic conductivity of 8.0 x 10⁻⁸ cm/s, which identifies the clay layer as an aquitard. Furthermore, the clay layer was encountered during the installation of monitoring wells 24 and 26 (Section 5) which also documents the continuity of the aquitard. A conceptual subsurface model (view from north and east) is provided as Figure 4-2.

5. WELL INSTALLATION

5.1 Overview

As part of the Phase II groundwater evaluation, 12 new monitoring wells, a pumping well, and an observation well were installed at the locations shown on Figure 5-1. The new monitoring wells were installed to obtain groundwater samples from areas of the site not previously investigated. The groundwater data obtained from the newly installed monitoring wells were used to evaluate trends of constituents of concern in groundwater in the zones of impact. Several monitoring wells were placed in locations that supplemented the database regarding the completeness of the confining clay layer east of the NL landfill, as requested by the EPA and as described in Section 4. The rationale for the location of each new monitoring well is provided on Table 5-1.

GeoSyntec used the lithologic data obtained during the installation of the monitoring wells to refine the three-dimensional subsurface model and cross-sections of the site. A summary of the activities and results of the monitoring well installation is provided below. Descriptions of the methods used to obtain and analyze the groundwater samples and the results of the chemical analyses are provided in Section 7. The pumping well and observation well were installed to perform an aquifer test, which is described in Section 11.

5.2 <u>Site Lithology</u>

Based on the findings of previous investigations, the NL site is underlain by three separate water-bearing formations: (i) an unconfined (i.e., water table) aquifer; (ii) the first-confined aquifer, and; (iii) the second confined aquifer [Geraghty & Miller, 1983 and O'Brien & Gere, 1990], as shown on Figures 4-2 and 5-2. In the reports of previous investigations, the unconfined aquifer was defined as the Cape May Formation; the first confined aquifer was reported to be below a confining clay unit that may or may not be continuous and in an upper unit of the Magothy-Raritan Formation; and the second confined aquifer was described to be in a lower unit of the Magothy-Raritan formation.

The lithologic information obtained during the previous subsurface evaluations are provided in Appendix A. As shown in Figures 4-2 and 5-2, a continuous clay layer

was observed at a depth ranging from approximately 20-feet to 40-feet below the land surface.

5.3 Monitoring Well Installation

The borings for the newly installed monitoring wells, except monitoring well 24, were advanced in the unconfined aquifer using HSA drilling techniques. Monitoring well 24, which is screened in the first confined (i.e., the semi-confined) aquifer, was drilled using mud-rotary techniques. Each of the new monitoring wells was installed by HHI, except monitoring wells 33 and 34. Monitoring wells 33 and 34 were installed by Unitech Drilling Company, Inc., of Malaga, New Jersey.

Each of the borings, except monitoring well 24, were drilled using 4.25-inch (10.8 cm) inside diameter HSAs. Split-spoon soil sampling and standard penetration tests (SPTs) were performed continuously throughout each boring, except in locations where well couplets (i.e., well pairs) were installed (e.g., wells 22 and 23). At these locations, soil sampling and SPTs were performed only in the deeper boring. The descriptions of the soils encountered and results of the SPTs were logged by the on-site GeoSyntec geologist. The geologist also screened soil samples using a PID to evaluate whether or not VOCs were present in the subsurface locations. The soil descriptions, PID readings, SPT results, and other observations made during the drilling activities were recorded on the Lithologic Logs provided in Appendix A.

After the borings were completed at each location, except monitoring well 24, the hollow stem augers were left in place and monitoring wells were constructed within the augers. The monitoring wells installed at the NL site were constructed of 2-inch diameter schedule 40 polyvinyl chloride (PVC) riser pipe and 2-inch diameter schedule 40 PVC screens (0.10-inch, slotted). After the wells were placed, a sand filter pack was added to a minimum height of two feet above the top of the screen section. A minimum 2-foot thick layer of bentonite pellets was installed above the sand filter pack. The annular spaces around the wells were then grouted from the top of the bentonite seal to the land surface using a bentonite/portland cement slurry. Each of the monitoring wells were completed with an approximate 30-inch stick-up, steel outer casing, and a concrete pad. The depth, screened interval and top of casing elevations for each of the newly installed monitoring wells are provided on Table 5-2.

Monitoring well 24, a deeper well, was installed as a double-cased well to prevent any possible vertical migration of constituents from the unconfined aquifer to the first confined aquifer. To accomplish this, a 12-inch diameter roller cone was used to drill through the water table aquifer and into the clay layer that separates the aquifers. An outer steel casing was then installed and grouted into the clay layer (at a depth of 26 feet to 42 feet bgs) separating the first confined aquifer from the water table aquifer. After the outer casing was set, a smaller diameter roller cone was used to remove the cuttings from the outer casing and complete the boring to a depth of 74 feet below land surface. The PVC well screen and riser were inserted inside the outer casing to the bottom of the boring. The monitoring well was completed by installing the sand filter pack, bentonite seal, and grout as described above. The monitoring well was completed with an approximate 30-inch stick-up, and steel casing. The depth, screened interval, and top of casing elevation for monitoring well 24 are provided on Table 5-2.

Upon the completion of each new monitoring well, the wells were developed by the drilling subcontractor using submersible pumps. GeoSyntec's on-site representative monitored well development.

Samples of soil were obtained from the borings drilled during the construction of the monitoring wells, as described in Section 6. The specific parameters and methods for the analyses of the soil samples are provided on Table 5-3.

5.4 <u>Pumping Well and Installation</u>

As requested by the EPA, GeoSyntec installed a pumping well, PW, and observation well, OW, at the NL site for use during aquifer testing. The purpose of installing these wells was to have a fully penetrating extraction well (i.e., PW) and a fully penetrating observation well (OW) for use during the aquifer test. The locations of these wells are provided on Figure 5-1. The locations of these wells were selected to be near monitoring wells KS and KD, which have historically contained the higher concentrations of groundwater constituents.

Prior to installing wells PW and OW, pilot borings were drilled by Earth Matters, Inc. The pilot borings were installed to evaluate the lithology in detail and to measure the depth to the clay layer underlying the unconfined aquifer. The pilot borings were drilled using a 3.25-inch diameter HSAs. Split spoon sampling and SPTs

were performed continuously in the pilot boring for pumping well PW. Descriptions of the aquifer material encountered are provided in Appendix A.

Soil samples were obtained from the pilot boring for pumping well PW and submitted to Hardin-Kight Associates, Inc. of Glen Burnie, Maryland for grain size analysis. The soil samples submitted for laboratory analysis were obtained at two-foot intervals (i.e., from each split spoon sample) from a depth of 6 feet to 26 feet. The results of the sieve analyses were submitted to Johnson Well Screens, Inc., the manufacturer of the well screen used in PW, for evaluation and design of the well screen.

On 4 May 1999, Earth Matters, Inc. installed wells PW and OW at the locations shown on Figure 5-1. Pumping well PW was drilled using 12-inch outside diameter HSAs to a depth of 26.5-feet bgs. The well was constructed using a 6-inch diameter schedule 40 PVC, 0.20-inch opening continuously wound well screen and 6-inch diameter riser. Well OW was drilled using 4.25 inch diameter HSAs to a depth of 26-feet bgs. The well was constructed using 2-inch diameter schedule 40 PVC riser and 0.10-inch, slotted screen. After the wells were constructed, the sand filter pack (Toney Drilling Supply Company–No. 1 Quartz Silica) and bentonite seal were installed. Each well was completed by grouting the annular space to the land surface with a bentonite/portland cement slurry. The depth and screened interval of wells PW and OW are provided on Table 5-2.

6. SOIL SAMPLING

6.1 Overview

During the Phase II groundwater evaluation, GeoSyntec performed drilling and soil sampling activities at the NL site to: (i) investigate the former septic bed (as described in Section 3); (ii) perform a landfill siting evaluation (as described in Section 4); and (iii) install wells at the site (as described in Section 5). While performing these activities, GeoSyntec obtained a significant amount of data regarding subsurface conditions. The data that were obtained were useful in supplementing existing data, which allowed for a more complete evaluation of the subsurface conditions at the site as described below.

6.2 Soil Sample Analysis

GeoSyntec obtained soil samples from the unconfined aquifer material at four new monitoring well locations and two locations in the former septic bed during the drilling and subsurface sampling activities performed as part of the Phase II groundwater evaluation. During drilling of monitoring wells 26, 28, 29 and 34, GeoSyntec obtained soil samples for chemical analysis to evaluate subsurface soil quality and lithologic properties in the unconfined aquifer. The samples from each location were obtained at approximate 4- to 6-foot intervals immediately below the water table. The results of the chemical analysis of the soil samples obtained during the Phase II groundwater evaluation are described on Tables 6-1 through 6-3.

As shown on Table 6-1, lead concentrations in soils in the unconfined aquifer ranged from 19.0 parts per million (19.0) in soil sample SBE to 0.56 ppm in the soil sample obtained at monitoring well 34. The concentrations of lead detected in subsurface soils are at least two orders of magnitude less than the site RAO concentrations for lead of 500 ppm. The low concentrations of lead in the samples obtained from the monitoring well locations, in conjunction with the geochemical analyses described in Section 11, indicate that residual lead concentrations in the aquifer material are not sufficient to act as a continuous source of lead contamination in the groundwater. Furthermore, they are within the expected range for background concentrations [Pais and Jones, 1997].

As shown on Table 6-2, acetone (19 ug/kg) was identified in soil sample SBW and was the only VOC detected above the CRDL in any of the soil samples obtained during the Phase II groundwater evaluation. Acetone is commonly used in laboratories and is often a spurious artifact of laboratory analyses. It is likely that the acetone reported herein is a laboratory artifact rather than a constituent present at the site. In fact, none of the VOCs identified in the ROD were detected in any of the subsurface soil samples obtained during the Phase II groundwater evaluation.

As shown on Table 6-3, low concentrations of gross alpha and gross beta constituents were detected at similar levels in each of the soil samples obtained during the Phase II groundwater evaluation. Several low concentration radiological isotopes were identified by gamma spectroscopy in each of the soil samples obtained. Also, low concentrations radiological isotopes were identified using alpha spectroscopy from the soil sample obtained at monitoring well 28. As stated in the RI, portions of the State of New Jersey contain detectable levels of radioactivity [O'Brien & Gere, 1990]. Therefore, the radiological parameters observed may be naturally occurring and not a significant concern.

In addition to the constituent analyses described above, GeoSyntec submitted soil samples obtained during the installation of monitoring wells to the laboratory for general chemistry analysis, and three of the samples were submitted for petrographic and mineralogical analyses, as described in Section 5. The results of the general chemistry and mineralogical analyses are summarized on Tables 6-4 and 6-5. The general chemistry parameters obtained from the subsurface soil samples were used to evaluate the fate and transport of constituents in the groundwater, as described in Section 12. The results of the mineralogical tests performed on the subsurface samples are provided in Appendices C and D, respectively, and were used to evaluate the geochemical characteristics of the subsurface.

7. GROUNDWATER SAMPLING

7.1 Overview

GeoSyntec obtained groundwater samples from 24 monitoring wells during the Phase II groundwater evaluation using low-flow sampling techniques. As shown on Table 7-1, 22 groundwater samples were obtained from monitoring wells screened within the unconfined aquifer, and two groundwater samples were obtained from monitoring wells screened within the first confined (semi-confined) aquifer. Figure 7-1 depicts the locations of each of the monitoring wells sampled during the Phase II groundwater evaluation. These sampling locations were selected to: (i) verify the data obtained during previous investigations; (ii) evaluate areas where incomplete or insufficient data had been obtained during previous investigations; (iii) evaluate whether constituents identified during previous investigations migrated to downgradient locations; (iv) identify potential trends in constituent concentrations, and; (v) obtain additional hydrogeological information requested by EPA. A summary of the constituents for which each of the samples were analyzed is provided on Table 7-1; the construction details of the monitoring wells sampled are provided on Table 7-2.

GeoSyntec performed the sampling for the Phase II groundwater evaluation during the period between 8 July 1998 and 23 July 1998, with several exceptions. The groundwater sample obtained from monitoring well 26 was obtained on 23 September 1998. Also, inconsistencies were noted in the data obtained from the July 1998 sampling event. The concentrations of total and dissolved inorganics are typically similar in all monitoring wells sampled at the site during both phases of the groundwater evaluation. However, for the sample obtained from OS in July 1998, the values for total and dissolved lead varied widely. To evaluate this inconsistency, monitoring well OS was resampled on 23 September 1998. The concentrations of total and dissolved lead in the sample obtained from OS on 23 September 1998, were similar (Table 7-3). Additionally, due to delays in obtaining site access, sampling of monitoring well Exxon Well No. 2 was performed on 26 January 1999, and the samples obtained from monitoring wells 33 and 34 were obtained on 19 May 1999 and 20 May 1999, respectively. The methods used to obtain and analyze the monitoring well samples and the results of the chemical analyses are presented below.

7.2 Synoptic Water-Level Measurements

Prior to commencing sampling activities, the depth to groundwater was measured at each of the existing and newly installed groundwater monitoring wells sampled during the Phase II groundwater investigation. Groundwater levels at these locations were also obtained periodically during well purging to verify that drawdown within each well was minimized during the well purging process. The groundwater levels obtained from each well sampled during the Phase II groundwater evaluation are provided on the Groundwater Sampling Forms provided in Appendix E.

Prior to obtaining water-level measurements, each monitoring well was opened so that the water level within each well could equilibrate to atmospheric pressure. After equilibration, a clean, electronic measuring device was used to measure the depth from the top of the casing (PVC riser) to the water surface. To minimize the potential for cross-contamination between wells, the measuring device was rinsed with deionized water between deployment at each location.

During the performance of the groundwater evaluations, GeoSyntec noted that the monitoring well casings, which had been installed at various times since 1983, were not surveyed relative to a consistent datum. Therefore, the elevations for several monitoring well casings were resurveyed. Groundwater levels were remeasured on 16 December 1999. A potentiometric surface map for the site, constructed from the 16 December 1999 water level measurements and the new survey data is provided as Figure 7-2.

7.3 Field Methods and Field Parameter Monitoring

7.3.1 Preparation for Sampling

Prior to sampling, each monitoring well was purged using stainless steel submersible pumps (i.e., Grundfos Rediflo 2®) in accordance with the low-flow sampling techniques described in the Sampling, Analysis and Monitoring Plan (SAMP) contained in the RDWP [GeoSyntec 1997]. During well purging, the field parameters, temperature, pH, specific conductance, dissolved oxygen, and turbidity, were monitored using portable field instruments. The field parameter readings obtained at each location were recorded on the Groundwater Sampling Forms, provided in Appendix E. Well

purging was continued until field parameters stabilized, or a minimum of four hours of purging was performed.

After purging was completed, groundwater samples were obtained by filling clean, sampling containers directly from the discharge tubing of the pump at each wellhead. Samples to be analyzed for dissolved metals analysis were filtered in the field prior to being placed in the sample containers. The samples were filtered using disposable, in-line filters (i.e., GeoTech® Disposa-filter (45 micron)).

To minimize the potential for cross-contamination between wells, the submersible pumps were decontaminated prior to deployment at each location in accordance with the decontamination procedures outlined in the RDWP [GeoSyntec 1997]. In addition, new, dedicated Teflon® discharge tubing and in-line filters were used at each monitoring well location.

At the beginning of each day, instruments used to obtain the field parameter measurements were calibrated in accordance with manufacturer's recommendations and the Quality Assurance Project Plan (QAPP) [GeoSyntec 1997]. On a few occasions, field instrument failure prevented portions of the field parameter data from being obtained or caused inconsistencies in the data. When this occurred, members of the sampling team noted the incidents on the Groundwater Sampling Forms (Appendix E) and, when possible, performed corrective actions. These corrective actions included, but were not limited to, replacing malfunctioning instrumentation, repairing field instruments, and/or retaining aliquots of the effluent for analysis at a later time.

A summary of the field parameter readings obtained during the groundwater monitoring well sampling activities is provided on Table 7-4. A brief discussion of the results for each parameter measured in the field is provided below.

7.3.2 pH Measurement

The pH of groundwater is an important factor in determining the solubility of metals in groundwater. As shown on Table 7-4, pH values ranged from 3.0 in monitoring well SD to 6.8 in monitoring well BR.

To evaluate changes in pH values over time, GeoSyntec constructed isopleth drawings for the 1998, 1997, and 1983 data obtained at the site (Figures 7-3 through

7-5). As shown on Figure 7-3, an area of relatively low pH (i.e., < 4.0) is apparent in the north central portion of the site. The presence of relatively low pH values in this area is generally consistent with the historical data. However, by comparing the 1983 and 1998 data, the pH values across the site are generally increasing. The increasing trend evident in the pH data is related to the mechanisms described in Section 2 and indicates that groundwater quality at the site is improving. The increasing trend of pH results in general decreased solubility of inorganics in the groundwater. Therefore, if this trend continues as expected, further significant improvement to the groundwater quality regarding metals concentrations will occur.

7.3.3 Specific Conductance

The specific conductance values reported on Table 7-4 range from 0.09 units in well JS to 8.74 in well SD. Specific conductance is a measure of the electrical conductivity of a groundwater system, which is directly related to the concentration of dissolved solids in the groundwater. Generally, specific conductance is higher in samples containing greater concentrations of inorganic constituents.

7.3.4 Reduction-Oxidation (Redox) Potential

The reduction-oxidation (redox) potential of groundwater is a measure of the electrochemical potential and is used to evaluate whether conditions in the groundwater are chemically reducing or oxidizing. The redox potential values reported on Table 7-4 range from + 426 millivolts (mv) at well 23 to -325 mv at well 33. This variation in redox potential generally indicates that a range of oxidizing and reducing conditions exist in groundwater at the site.

7.3.5 Dissolved Oxygen

The dissolved oxygen values reported on Table 7-4 range from 0.13 parts per million (ppm) at well 24 to 10.95 ppm at Exxon Well No. 2. Dissolved oxygen concentrations are an indicator of general groundwater quality. Typically, when groundwater conditions are chemically reduced, dissolved oxygen concentrations are lower. This can be related to several factors including biochemical redox reactions that naturally occur.

7.3.6 Turbidity

The turbidity values reported on Table 7-4 range from 0.5 to 1100 nephalometric turbidity units (NTUs). The turbidity of a sample is an indirect measure of the amount of material suspended in the sample. Often, the suspended material is soil and sediment introduced during sampling.

Although turbidity in groundwater samples may be caused by colloidal particles that may exist in the aquifer, high turbidity levels (i.e., greater than 10 NTUs) are more often the result of agitation of the groundwater within a well during sampling. Agitation of the groundwater within a well causes sediments within and near the well to become suspended in the water column. When a sample is obtained, these suspended materials become incorporated into the sample and are subsequently analyzed with the sample. Because inorganics such as lead and cadmium, have an affinity to sorb to soil and sediment particles, the analysis of a sample containing these particles (i.e., a turbid sample) will result in an artificially increased detection of inorganics. It is also important to understand that even in low-turbidity samples, when the particles present in the sample contain relatively high concentrations of sorbed constituents, a commensurate high concentration of constituents may be measured when the sample is analyzed.

While low-flow sampling techniques, as used during sampling at the NL site, are intended to reduce the effects of sampling-induced turbidity, this technique is not without limitations. As shown on Table 7-5, several samples obtained using the low-flow sampling technique exhibited relatively high turbidity levels. Also, as shown on Table 7-5, concentrations of dissolved lead in some of the samples containing elevated turbidity levels are considerably lower than the total lead concentrations detected in the same samples. The discrepancy between detected levels of total and dissolved lead is likely the result of desorption of metals from soil particles in the unfiltered samples during the acidic extraction step of the laboratory analysis.

7.4 Laboratory Methods

As shown on Table 7-1, each groundwater sample obtained from the 24 monitoring wells sampled during the Phase II groundwater evaluation was analyzed for VOCs, total and dissolved lead, and total and dissolved cadmium. In addition, the

samples obtained from the newly installed monitoring wells and Exxon Well No. 2 were analyzed for radiological parameters and general chemistry (Table 7-5). The laboratory analyses were performed by Quanterra Laboratory Services, Inc. (Quanterra) of Pittsburgh, Pennsylvania, except radiological parameters which were analyzed by Quanterra of St. Louis, Missouri.

7.5 <u>Laboratory Results</u>

7.5.1 Overview

The results of the laboratory analyses of the groundwater samples are summarized on Tables 7-3 and 7-7 through 7-10. For each of the analyses performed, a brief discussion of the results is provided below. In evaluating the results, the data were compared to historic data and to the RAOs defined in the ROD. On Table 7-11, the historical groundwater data for the site is summarized. Table 7-12 summarizes constituents detected in the groundwater that exceeded the RAOs during the Phase II groundwater evaluation. A description of the EPA laboratory qualifiers for organic and inorganic constituents used in the tables is provided in Appendix F.

7.5.2 Volatile Organic Compounds (VOCs)

Table 7-7 summarizes the VOC concentrations detected in groundwater at the site during the Phase II groundwater evaluation. As specified in the ROD, the VOCs of concern in groundwater at the site include: 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), tetrachloroethene (PCE), and vinyl chloride. A brief discussion of the results for each of the VOCs identified as COCs is provided below.

1,1-Dichloroethane (DCA)

As shown on Table 7-7, DCA was detected at a concentration of 9.2 μ g/L in the groundwater sample obtained from monitoring well BR. DCA was also detected at estimated concentrations of 0.43 μ g/L and 0.13 μ g/L in monitoring wells 12 and 24, respectively. The concentrations of DCA detected during the Phase II groundwater evaluation are significantly lower than the RAO of 70 μ g/L.

1,1-Dichloroethene (DCE)

As shown on Table 7-7, DCE was detected at a concentration of 11 μ g/L in the groundwater sample obtained from monitoring well BR. This concentration slightly exceeds the RAO of 2 μ g/L. DCE was detected at a concentration of 13 mg/L in the sample from monitoring well BR in 1997. DCE was also reported at an estimated concentration of 0.12 μ g/L in monitoring well 11 in 1997. DCE had previously been detected in monitoring well 11 at concentrations of 170 μ g/L (1989 data) and 210 μ g/L (1990) data. These data show that the constituents of DCE in groundwater at monitoring wells BR and 11 are declining.

Tetrachloroethene (PCE)

As shown on Table 7-7, PCE was detected at a concentration of 3.0 μ g/L in the groundwater sample obtained from monitoring well BR. This reported concentration slightly exceeds the RAO of 1μ g/L. PCE was reported at a concentration of 2.9 μ g/L in the sample from monitoring well BR in 1997. PCE was also detected in monitoring well 11 at an estimated concentration of 0.28 μ g/L. PCE had previously been detected in monitoring well 11 at concentrations of 180 μ g/L (1989 data) and 210 μ g/L (1990) data.

Vinyl Chloride

As shown on Table 7-7, vinyl chloride was detected at concentrations of $13 \,\mu\text{g/L}$ and $4.1 \,\mu\text{g/L}$ in monitoring wells 12 and 24, respectively. These wells are screened within the first confined (semi-confined) aquifer. The vinyl chloride concentrations reported for the sample obtained from monitoring wells 12 and 24 exceed the RAO of $2 \,\mu\text{g/L}$ (practical quantitation limit). Vinyl chloride was not detected in any of the other monitoring wells sampled during the Phase II groundwater evaluation (i.e., wells screened within the unconfined aquifer). As described in Section 2, it is possible that the source(s) for vinyl chloride and possibly other VOCs are not related to the former operation of the NL site.

VOCs were detected infrequently and sporadically varied at the site. The data obtained from the recent sampling events (i.e., 1997 and 1998) show that VOC concentrations have generally decreased significantly. Because the VOCs detected

were not concentrated in one area and because the VOC concentrations have declined, it is not necessary to pursue a remedial action to address VOCs in groundwater.

7.5.3 Inorganics

As previously discussed, groundwater samples obtained from each monitoring well sampled during the Phase II groundwater evaluation were analyzed for total and dissolved lead and cadmium. Both lead and cadmium were identified at concentrations exceeding their respective RAOs in several monitoring wells. Discussions of the results for lead and cadmium are provided below.

Lead

As shown on Table 7-3, total lead was detected at concentrations exceeding the RAO of 10 μ g/L in the samples obtained from the following monitoring wells: OS (281 μ g/L), SD (25.6 μ g/L (estimated)), 27 (19.9 μ g/L), 28 (15.4 μ g/L), and 30 (37.4 μ g/L). Dissolved lead concentrations exceeded the RAO in these same wells. The concentrations of total and dissolved lead reported during the Phase II groundwater evaluation are generally lower than those reported during previous investigations performed at the site.

To identify changes in the distribution of lead in groundwater, GeoSyntec used the current total lead data to construct the zone of impact drawing provided on Figure 7-6. The current zone of impact, based on the Phase II groundwater evaluation data was compared to the zone of impact drawings on Figures 7-7 through 7-10, which were constructed using historical data obtained at the site (i.e., 1997, 1989/1990, 1988 and 1983, respectively). Also, in Figures 7-11 and 7-12, the vertical distribution of lead is shown using 1998 and 1983 data, respectively. As shown in the vertical sections and the plan view, the extent of the zone of impact has decreased over time.

Based on these comparisons, it is evident that lead concentrations in groundwater across the site have decreased considerably; also the spatial distribution of lead in groundwater has decreased. From these comparisons, it is also evident that the zone of impact has remained stationary over time. Furthermore, no significant increase in lead concentrations has occurred in wells downgradient from the zone of impact. (An apparent increase in the concentration of lead in samples from monitoring wells 15 and 17 was noted between 1989 and 1997. However, because the change was small, the

change may be attributed to sampling variability. The concentrations detected were below the RAO for lead. Furthermore, the results obtained from the samples from monitoring wells 33 and 34 show that lead in groundwater previously detected at monitoring wells MS and MD does not extend downgradient). Therefore, it is clear that the mass of lead in groundwater is decreasing. Between 1983 and 1998, the estimated mass of lead in groundwater has decreased from approximately 100 Kg to approximately 4 Kg (Table 2-1).

Because the zone of impact is shrinking and lead concentrations are decreasing, it is apparent that the groundwater is generally improving. The evidence provided by the changes in the groundwater quality over time indicates that lead is naturally being removed from groundwater at the site.

Cadmium

As shown on Table 7-3 total cadmium concentrations exceeded the RAO of 4 µg/L in 12 of the 24 monitoring wells sampled during the Phase II groundwater evaluation. Dissolved cadmium concentrations, which were generally slightly lower than the total cadmium concentrations, exceeded the RAO in the same monitoring wells. The concentrations of cadmium (total and dissolved) reported during the Phase II groundwater evaluation were generally lower than those reported during previous sampling events where historical data existed (Table 7-11).

Similar to the evaluation of the lead data, GeoSyntec constructed zone of impact drawings for the current and historical (i.e., 1998, 1997, and 1989) cadmium data (Figures 7-13 through 7-16). As shown in Figures 7-13 through 7-16, the zone of impact for cadmium has decreased both in spatial distribution and concentration (i.e., reduced mass) over time. As for lead, the data for cadmium also confirm that groundwater quality is improving. Between 1988 and 1998, the estimated mass of cadmium in groundwater has decreased from 32 Kg to 6.4 Kg (Table 2-1).

Radiological Parameters

Table 7-8 summarizes the concentrations of gross alpha and gross beta detected in groundwater at the site. Concentrations of gross alpha were detected above the RAO of 15 picocuries per liter (pCi/L) in monitoring wells 28 (51.4 \pm 7.0 pCi/L) and 31 (280 \pm -29 pCi/L). Concentrations of gross beta exceeded the RAO of 4 pCi/L in the

following wells: 22 (5.06 ± 1.04 pCi/L), 23 (9.66 ± 1.69 pCi/L), 27 (16.0 ± 2.0 pCi/L), 28 (106 ± 11 pCi/L), 29 (6.06 ± 1.48 pCi/L), 30 (12.8 ± 3.0 pCi/L), 31 (109 ± 11 pCi/L), 32 (8.68 ± 1.58 pCi/L), 33 (12.1 ± 3.3 pCi/L), and Exxon Well No. 2 (7.25 ± 1.68).

Concentrations of both gross alpha and gross beta exceeding the RAOs have been reported in various monitoring wells during previous investigations. Because the Phase II groundwater evaluation was the first time the radiological parameters were analyzed in samples obtained from the newly installed monitoring wells and Exxon Well No. 2, a comparison with historical data could not be performed. However, radiological parameters were generally detected in the deeper zone of the water table aquifer. Their general absence in the shallow zone may indicate that they occur naturally. Had the source been former site operations, it is expected that they would be more prominent in the shallow zone.

During the Phase II groundwater evaluation, GeoSyntec also performed specific isotope analyses of radiological parameters using alpha spectroscopy in each of the newly installed monitoring wells and Exxon Well No. 2 and in selected wells using gamma spectroscopy (Table 7-9).

General Chemistry Parameters

GeoSyntec obtained samples from specific wells for analysis of various general chemistry parameters. The results of these analyses are summarized on Table 7-10. The results of these analyses were used in the geochemical evaluation described in Section 11. The data were also used in the fate and transport model, as described in Section 12.

Summary

The detection of parameters other than lead and cadmium were generally infrequent. Where historic data exist, recent detections of parameters within the same locations were typically lower than previous detections. As described, many of the parameters were detected at low concentrations relative to RAOs. VOCs were detected infrequently and VOC concentrations have declined. Radiological parameters were detected almost exclusively in the deeper zone, therefore, they may be naturally occurring. Radiological parameters are inorganic and tend to react as other inorganics

in the subsurface (they tend to be immobile). Therefore, based on current groundwater quality, lead and cadmium are the only parameters in groundwater that are significant relative to their occurrence at the site and the possible implementation of a remedy for groundwater.

7.6 Quality Assurance/ Quality Control

7.6.1 Quality Assurance/Quality Control Samples

In accordance with the SAMP [GeoSyntec 1998], quality assurance/quality control (QA/QC) samples were obtained to evaluate the accuracy and precision of the field and laboratory analytical techniques. The QA/QC samples obtained by GeoSyntec included equipment rinsate blanks prepared daily, blind duplicate samples, matrix spike (MS) samples, matrix spike duplicate (MSD) samples, and trip blanks. The QA/QC samples were analyzed for the same constituents as the groundwater monitoring well samples, except for the trip blanks. Trip blanks were analyzed only for VOCs.

7.6.2 Data Validation

The data obtained during the Phase II groundwater evaluation were validated according to the methods described in the RDWP. The laboratory data were validated by Premier Environmental Services of Merrick, New York. The validation methods included a review of the data for precision, accuracy, comparability, completeness, and for the appropriateness of the testing methodologies. As part of the validation process, the results of field and laboratory QA/QC samples were evaluated along with the raw data generated by the laboratory.

With few exceptions, the data collected during the Phase II groundwater evaluation met the data quality objectives (DQOs) specified in the RDWP. The few data that did not meet DQOs were rejected. Other quality control issues identified during the data validation process are noted in the data summary tables. A summary of the qualifiers used in reporting the data is provided in Appendix F.

8. PRIVATE WELL SAMPLING

8.1 Overview

As part of the Phase II groundwater evaluation, water samples were obtained from nine private wells (residential and commercial facilities). For sampling purposes, the water treatment system at each location was by-passed. Taps were turned on and water was allowed to discharge for approximately one minute to flush the system. Thereafter, a sample of water was obtained and submitted to the analytical laboratory for total and dissolved lead and cadmium analysis. The locations from which tap water samples were obtained are identified on Table 8-1 along with the results of chemical analyses of the samples.

8.2 Results

The results indicate that the Safe Drinking Water Act level for total lead (i.e., 15 μ g/L) was exceeded in three samples. In four samples, the RAO for total lead (i.e., 10 μ g/L) was exceeded. No MCLs or RAOs for cadmium were exceeded. In the samples obtained from the taps located at the Cassano, Cruz and Eyler residences, respectively, the RAO for total lead. The Safe Drinking Water Act level was exceeded in the samples obtained only from the Cruz and Eyler residences.

The greatest concentration of total lead detected was 26.5 ppb, which was detected in the sample obtained from the Eyler residence in July 1998. It was suspected that this detection was related to the piping at the Eyler residence. To bypass the treatment system, the plumbing had to be physically disconnected. To purge the system, water was allowed to discharge for approximately one minute, however, it was discharged very slowly and a complete purge of the plumbing may not have been achieved. A sample of water was obtained directly from the disconnected piping. To evaluate the effect that purging the plumbing had on the sample, the water from this location was resampled in January 1999. In the latter sampling event, a better purge was achieved. The results of the second round of sampling at the Eyler residence indicated that the sample contained a total lead at concentration of only 10.5 ppb.

Including the results of the second round of sampling at the Eyler residence, the RAO for total lead was exceeded at three locations. Cadmium was not detected in any

of the samples. Aliquots of each sample were also filtered in the field prior to chemical analysis to evaluate dissolved lead and cadmium concentrations. The results of the analysis of dissolved lead and cadmium are summarized on Table 8-1. Except for the original sample obtained at the Eyler Residence (i.e., July 1998), neither Safe Drinking Water Act levels nor RAOs were exceeded for dissolved lead and cadmium in any of the samples obtained.

8.3 Evaluation of Results

Although lead is a constituent in groundwater at the NL site, it is not the source of the lead detected in the tap water at the private wells. Most of the private wells are not hydraulically downgradient from the site. Therefore, it is improbable that groundwater containing lead at the site could affect the private wells. Also, the groundwater at the site contains cadmium. If groundwater from the site had affected the water from the private wells, then cadmium would have also been detected in the samples. Because cadmium was not detected, the source of lead in the tap water from the private wells is unrelated to the groundwater at the NL site. More likely, the source of lead is related to the plumbing of the water systems at the private wells. The possibility that the plumbing systems are the sources of lead detected at the Cassano, Cruz, and Eyler residences was confirmed through the two sampling events performed at the Eyler residence where the purge of the plumbing systems was varied.

9. AQUIFER TEST

9.1 Overview

In 1983, Geraghty & Miller performed an aquifer test at the NL site. The EPA questioned some of the techniques used in Geraghty & Miller's evaluation and required the Group to perform an aquifer test. This section includes a description of the aquifer test performed in June 1999 by GeoSyntec. The aquifer test was conducted to: (i) confirm the hydraulic parameters determined by Geraghty & Miller in 1983; (ii) predict the performance of a groundwater extraction system that might be designed to remove lead and cadmium from the aquifer; and (iii) establish input parameters for capture zone modeling as requested by the EPA.

Aquifer parameters have been estimated based on the results of the aquifer test completed in June 1999. Standard analytical methods were employed in the analysis of the aquifer test data to determine transmissivity, hydraulic conductivity, and storativity. AQTESOLVTM for WindowsTM (HydroSOLVE, Inc., 1999) was used to perform the analyses. The hydraulic parameters, combined with other site-specific data such as average grain size, depth to the underlying clay layer, saturated thickness, etc., were used to refine the conceptual hydrogeologic model of the site originally presented in the *Phase I Groundwater Evaluation Technical Memorandum*.

The aquifer testing included ambient water-level monitoring, a variable-rate pumping test (step test), and a 72-hour constant-rate pumping test. Groundwater was pumped from pumping well PW, a six-inch diameter, fully-penetrating well installed and developed for the conduct of this aquifer test. Drawdown was measured in several nearby wells throughout the testing process, including observation well OW, the nearest well to pumping well PW. The relative locations of PW, OW, and all other observation wells used during the test are presented on Figure 9-1. Boring logs are provided in Appendix A for each of the new wells at the site. The following subsections describe the aquifer testing procedures and present the analysis of the results.

9.2 Procedures

9.2.1 Ambient Water-Level Monitoring

Prior to the on-set of aquifer testing, passive water-level monitoring was conducted using PXD-60 pressure transducers and a Hermit datalogger manufactured by In-Situ, Inc. This monitoring was conducted for approximately 13 days beginning on 20 May 1999 and measurements were collected once per hour. Measurements were obtained from six wells including: PW, OW, 27, 28, KS, and KD. Figure 9-2 shows a hydrograph throughout the 13-day monitoring period at observation well OW. After approximately 95 hours of monitoring, at approximately 12:30 p.m. on 24 May 1999, the water level began to rise in Well OW, increasing approximately one foot over a 13-hour period. This increase in water level was also evident in the other wells monitored. This rise was coincident with an 11-hour precipitation event that included more than two inches of rain over the area (precipitation data derived from Wilmington, Delaware weather station, NOAA, 1999). Following the peak water level, the head in the wells gradually declined toward the seasonal low, approaching static conditions just prior to the step test.

GeoSyntec obtained additional ambient water-level data after the step test and constant-rate test were completed to further evaluate the characteristics of the aquifer. This monitoring began on 23 July 1999 and continued through 9 August 1999. The hydrograph for pumping well PW is shown on Figure 9-3. The graph indicates a steady decline in the water table as no precipitation occurred during the monitoring period. The decline is approximately 0.04 feet per day, with diurnal fluctuations of approximately 0.02 feet. The diurnal peaks generally occur between 3:00 and 4:00 am and the diurnal troughs generally occur between 8:00 and 10:00 p.m. Figure 9-4 shows the first 4,500 minutes of this monitoring period in greater detail.

9.2.2 Step Test

After obtaining the pre-test ambient water-level data, a step test was conducted on 2 June 1999 in pumping PW. This step test was performed to determine an optimal pumping rate for the subsequent constant-rate test by measuring the pumping rate and drawdown and establishing a rate that adequately stressed the aquifer without dewatering the well. A submersible centrifugal pump, powered by a portable 440 amp generator was used. Pumped water was conveyed to a 20,000 gallon portable tank, and the pumping rate was determined with a graduated, five-gallon bucket and a stop watch.

Seven steps were conducted over a period of approximately 200 minutes. Figure 9-5 shows the hydrograph at PW during the step testing and a table of respective pumping rates. Based on the results of the test, a target pumping rate of approximately 20 gallons per minute (gpm) was selected for the constant-rate test. Appendix G contains the raw transducer data from the step test.

9.2.3 Constant-Rate Test

On 7 June 1999, a 72-hour constant-rate pumping test (CRT) was conducted at pumping well PW. Pumping-rate determination, water containerization, and water-level measurement procedures were similar to those used during the step test. In addition, a total of 33 site wells were monitored with portable water-level indicators (WLIs) to calibrate the datalogger and to serve as a backup in the event of datalogger/transducer failure. Appendices H and I contain tabulated data from the datalogger and WLIs, respectively. Prior to the onset of pumping, static water level elevations were determined for each of the wells monitored throughout the aquifer testing (Figure 9-6). The map includes only those wells screened within the upper portion of the unconfined aquifer. Some wells, such as HS and 22 are excluded from the map because they are screened in clay. The water levels measured throughout the testing period are summarized on Table 9-1.

9.3 Evaluation and Results

9.3.1 Hydraulic Analysis

Figure 9-7 shows the hydrograph of observation well OW throughout the testing period. The hydrograph depicts a rapid drop in water level at the start of the constant rate test with minor fluctuations caused by minor adjustments in the pumping rate, followed by steady drawdown over a period of approximately one day. After approximately 1,500 minutes of pumping, the portable generator failed and pumping ceased for 68 minutes until a replacement generator could be brought on-line and the test resumed. Slight fluctuations in the data are evident as the pumping rate was adjusted to original pumping conditions. The maximum fluctuation in pumping rate was 10 percent, and generally, the pumping rate varied by only five percent. Variations occurred only over short periods during the test; therefore, the resultant data are valid for the hydraulic evaluation. The average pumping rate throughout the entire 72-hour period was 18.75 gpm.

Figure 9-8 is the same hydrograph shown on Figure 9-7, but it is extended to show the aquifer recovery following the CRT and includes barometric pressure data collected during the same period. Barometric pressure is monitored during pumping tests to determine the influence, if any, of fluctuating atmospheric pressure on the potentiometric surface in the aquifer. Such an effect is primarily observed in confined aquifers, but prudent practice dictates the monitoring of barometric pressure during all aquifer tests. If an effect is seen, the barometric efficiency of the well is calculated and the drawdown data are adjusted accordingly. For this test, a barometric pressure transducer was connected to the datalogger to record pressure in feet. As shown on Figure 9-8, and as expected for an unconfined aquifer, there was no observed barometric effect on the water table and adjustments were not necessary. The small peak in the recovery data at approximately 11,000 minutes after the start of the CRT resulted when water containerized during the test was released. Figure 9-9 depicts the potentiometric surface on 10 June 1999 near the end of the pumping test.

The drawdown data indicate a delayed-yield response typical of unconfined aquifers. Figure 9-10 shows one example of this response. In Segment 1 of Figure 9-10, the data initially reveal a drawdown curve similar to that expected from a confined aquifer, because water is being released from the elastic storage of the aquifer, not from the pore spaces of the aquifer. Thereafter, in Segment 2, the drawdown rate decreases and the data reveal a more gradual curve as gravity drainage contributes water that was previously held in storage (i.e., within the pore spaces of the sand grains). Eventually, as in Segment 3, the effects of gravity drainage are diminished as the aquifer becomes unsaturated above the cone of depression. Neuman (1974) devised an analytical solution for unconfined aquifers with delayed gravity response. Use of this solution provides estimates of transmissivity, storage coefficient, specific yield, and Beta, a term that relates the aquifer anisotropy and radial distance to the observation well.

Figures 9-11, 9-12, and 9-13 are AQTESOLVTM for WindowsTM results of Neuman solutions conducted on drawdown and recovery data from Wells OW, KD, and 28, respectively. Because AQTESOLVTM incorporates the principle of superposition in the analysis to accommodate variable pumping rates (Streltsova, 1988), it is possible to combine both drawdown and recovery (including the short stoppage in pumping when the generator failed) at a well in one solution. Prior to analysis, late drawdown data were corrected for dewatering using Jacob's correction method (Jacob, 1944). The results of the analyses shown on Figures 9-11, 9-12, and 9-13 are summarized below.

Well	T (gpd/ft)	S	Sy	В	b (ft)	k (gpd/ft ²)
ow	3800	5.03E-04	4.69E-02	4.30E-03	23	165
28	4200	1.60E-03	2.29E-02	2.70E-01	18	233
KD	4300	2.40E-04	1.00E-02	1.33E-02	23	187
Mean	4100	7.81E-04	2.66E-02	9.59E-02	21	195

Notes: T = Transmissivity

S = Storativity

Sy = Specific yield

B = Beta

b = Aquifer thickness

k = Hydraulic conductivity

The results indicate a relatively transmissive aquifer, with: (i) an average transmissivity of approximately 4,100 gpd/ft; (ii) a storativity of 8 x 10⁻⁴ during the earliest portion of the data, a result that is reasonable for the segment of the test that exhibits a confined aquifer response; and (iii) a specific yield (equivalent to storativity near the end of the test) of approximately 3 x 10⁻², a result that is a reasonable storativity estimate for an unconfined aquifer. At an average saturated thickness of 21 feet, these results yield a hydraulic conductivity estimate of approximately 195 gpd/ft² or 26 ft/day. These results are similar to the results obtained previously by Geraghty & Miller.

9.3.2 Chemical Analysis

Throughout the CRT, pH and turbidity were monitored. These results are presented on Table 9-2. In addition, groundwater samples were obtained from the pumping well and analyzed for lead, cadmium, VOCs and general chemical parameters. The results of the chemical analyses of groundwater samples obtained from pumping well PW during the CRT are summarized on Tables 9-3 through 9-5. concentrations of VOCs were detected. The data for lead, cadmium, pH, and turbidity were plotted with time on Figures 9-14 through 9-17. As indicated on Figures 9-14 through 9-17, the concentrations of lead and cadmium in the extracted groundwater were low, relative to the ambient concentrations of lead and cadmium in the groundwater where the extraction well is located. More significantly, the concentrations of lead and cadmium declined during the test. concentration was below the level of detection during most of the test. On one occasion, the generator supplying power to the pump stopped. Upon restarting the generator and pump, an increase in turbidity and lead concentration occurred briefly. Thereafter, the flow rate of the pump was altered slightly several times, which also

resulted in minor variations in turbidity and lead concentrations (Figures 9-14 and 9-15).

For cadmium, a steady decline in concentration was noted during the aquifer test. It is anticipated that the concentration of cadmium could have declined to below the level of detection within 12 to 15 days of pumping. However, because the test was performed for only three days, the time required for the concentration of cadmium to decline to the detection level is estimated.

9.3.3 Anticipated Extraction of Lead and Cadmium

When groundwater is extracted for an extended period, the concentrations of any constituents either dissolved in groundwater or entrained in the flow of groundwater tend to asymptotically decline to a minimum as geochemical reactions and dilution occur. In this case, the level to which the concentration of lead is expected to decline is below the level of detection. It is also anticipated that for cadmium, the concentration will be at or below the detection level. Under a long-term pumping scenario, the concentration of inorganics such as lead and cadmium in extracted groundwater may be significantly lower than the respective detection levels.

Assuming that 1 ppb of lead could be extracted continuously at an estimated flow rate of 37 gpm (Section 10) it is estimated that approximately 60 years of pumping would be required to extract a significant amount of the lead remaining in groundwater (Table 9-6). For cadmium, assuming the same extraction rate and an average concentration of 2 ppb in the extracted groundwater, it is estimated that 50 years of pumping would be required to extract a significant mass of the cadmium remaining in groundwater (Table 9-6). These timeframes are theoretical. Achievement of RAOs may occur in shorter periods as a result of the naturally occurring improvement of groundwater quality described above. Therefore, it is expected that extracting small amounts of lead and cadmium through the use of the pump-and-treat technique will not significantly enhance improvement of groundwater quality.

As described in Section 12, the results of modeling confirm that extracting significant amounts of lead and cadmium from the aquifer is infeasible. In fact, extracting lead and cadmium by pumping groundwater is so ineffective that it will not contribute significantly to achievement of RAOs. Therefore, the implementation of a pump-and-treat remedy for this site is impractical.

10. CAPTURE ZONE MODELING

10.1 Overview

This section describes the methods that GeoSyntec used to perform a capture zone analysis for groundwater at the NL site. The capture zone analysis was required by the EPA as part of the upcoming design of a remedy for groundwater. Specifically, the capture zone analysis was conducted to determine the optimum placement and pumping rates of simulated extraction wells to "capture" groundwater particles that migrate from the zone of impact.

The capture zone analysis was performed using numerical computer modeling techniques. A commercial computer code was selected and a model was constructed using site-specific aquifer data. Groundwater flow was then simulated within the model using the computer code. The model was calibrated by comparing known groundwater hydraulic heads to computer-simulated heads, and adjusting the model construction until observed heads and simulated heads were in agreement. After the model was calibrated, pumping conditions were imposed on the simulated aquifer and the model was verified.

Verification involved simulating the conditions of the constant-rate aquifer test described in Section 9 and comparing the simulated results to the results observed during the pumping test. After the calibrated model was verified, hypothetical groundwater particles were introduced in the model to track the pathlines of simulated advective groundwater flow. These pathlines represent the track of particles of groundwater that would be extracted or "captured" by a pumping well. Note that, the capture zone model does not address the possibility of extracting any constituents along with the groundwater particles. Therefore, the results of the capture zone evaluation alone cannot be used to evaluate the possible effectiveness of a pump-and-treat system at removing contaminant mass from the aquifer. Instead, an evaluation of fate and transport, as described in Section 12, is necessary.

The remainder of this section presents the methods and procedures used to construct and calibrate the capture zone model using MODFLOW (McDonald & Harbaugh, 1983). This section also contains the results of the capture-zone determination for one groundwater extraction scenario.

10.2 Groundwater Flow Model

10.2.1 Model Development

Site-specific hydrogeological data have been reported in several previous reports (e.g., Geraghty & Miller, 1983, O'Brien & Gere, 1990, GeoSyntec Consultants, 1998, and GeoSyntec Consultants, 1999). The site model was designed to include the existing data. This approach resulted in a model that adequately represents hydrogeologic conditions at the site. As discussed in the document entitled, "Capture Zone Evaluation Plan" [GeoSyntec, 1999], the uppermost portion of the unconfined aquifer is the principal area of impact beneath the site (Figure 7-11) and was, therefore, simulated in the site model. At the request of the EPA, this portion of the aquifer was divided in the model into two layers to allow MODFLOW to simulate vertical flow near pumping wells.

10.2.2 Model Grid

A base map showing model orientation, grid spacing, and inactive cells is shown on Figure 10-1. The focus area of the model was the area of former operations at the site and in most cases, did not extend beyond the property boundaries. Gray cells beyond the limits of this area depict inactive cells in the model. The model grid contains 39 rows and 37 columns in each layer. A variable grid spacing was used to allow smaller cell sizes near the pumping well (where head changes between adjacent cells are more pronounced) and larger cell sizes away from the pumping center (where such head changes are minimal). The top elevation of Layer 1 (i.e., ground surface) was taken from the site base map (OHM Remediation Services Corporation, 1996) and the bottom elevation of Layer 2 (i.e., the top of the underlying clay) was taken from site well logs and accompanying survey data. The bottom of Layer 1/top of Layer 2 was set at the midpoint between ground surface and the top of the underlying clay.

10.2.3 Aquifer Parameters

The aquifer parameters were taken from previously-obtained site-specific data. Based on the aquifer test results described in the Capture Zone Evaluation Plan and Section 9 of this report, hydraulic conductivity was set at 26 ft/day, specific storage (Ss) was set at 0.002, and specific yield (Sy) was set at 0.02. Effective and total

porosity were set at 0.2 and 0.4, respectively. With the exception of recharge and evapotranspiration, each hydrologic parameter was established as a constant in the model. Recharge and evapotranspiration were set at 10 and 26 in/yr, respectively, throughout the model (in Layer 1) except at the location of the concrete pad where these parameters were significantly less.

Based on reasonable estimates for aquifers in this setting, aquifer recharge between 10 and 14 inches per year was deemed appropriate for use in the model. To further estimate the recharge value for the model, the EPA's HELP3 model was utilized. Default input values for nearby Wilmington, Delaware and site-specific values for soil type and vegetative cover indicated that of the average annual precipitation of 40.71 inches expected to fall over a 30-year period, 26.13 inches would be evapotranspired and 1.14 inches would run off, leaving roughly 13 inches to enter the water table. Considering the rapid, one-foot water-level rise observed following a heavy rain (Figure 9-2), this appears to be a reasonable estimate.

10.2.4 Boundary Conditions

The approach to establishing model boundary conditions was to focus the model specifically within the site boundaries, where hydraulic data are readily available, yet fit the model within the regional flow system. The types of boundary conditions used in the model included general head, no-flow, and wells. As mentioned previously, the area surrounding the property was modeled with no-flow cells (cells inactive for flow). General-head boundaries were established in two main areas: (i) west and northwest of the site to simulate the effects of the Delaware River, the regional receiving stream; and (ii) south, east and northeast to simulate the groundwater high southeast of the site and establish the hydraulic gradient observed at the site. The general heads were varied throughout the calibration process to achieve the best representation of observed heads and gradient at the site. This approach was used because there are generally insufficient hydraulic data from the area outside the property boundaries. The well boundary (i.e., the pumping well used for the pumping test) was activated only for the pumping scenarios in the model simulations.

10.2.5 Non-Pumping Simulation

Following setup, the model was run in steady-state to simulate aquifer conditions under a non-pumping scenario. Initial heads for the model were based on the static water levels observed prior to the start of the aquifer test on 7 June 1999 (see Figure 9-6). Figure 10-2 depicts the Visual MODFLOW output of a steady state simulation. The resultant head elevations, flow directions, and gradients represent the observed data presented on Figure 9-6. Figure 10-3 shows the calibration statistics and a plot of simulated versus observed heads for the 13 wells depicted as shaded cells on Table 9-1. These wells comprise the set of site wells for which confident survey data are available and which are screened within the shallow portion of the unconfined aquifer. Well 29 was omitted from the calibration statistics because its water level could not be adequately simulated by the model. This situation may be attributed to hydrogeologic conditions that exist beneath the concrete pad, which will be removed as part of the remedial action for soil and sediment.

10.2.6 Simulation

Following calibration of the steady-state model, simulated pumping conditions were imposed to verify the calibrated model. A pumping well was simulated at the location of PW-1, which was the test well installed for the aquifer test. The simulated well had a pumping rate of 18.75 gallons per minute (gpm) and a pumping duration of three days. These conditions are identical to those of the aquifer test conducted on 7 June 1999. A transient groundwater flow simulation was conducted to simulate the aquifer test. Figure 10-4 shows the MODFLOW-simulated water table at the end of the constant-rate aquifer test. As shown by the observed data from the end of the aquifer test (Figure 9-10), the model provides is a very good simulation. Figure 10-5 shows calibration statistics and a plot of simulated versus observed heads for the pumping simulation. Observation wells used for calibration were identical to those used for the static condition.

10.2.7 Capture-Zone Simulations

Upon verification of the calibrated model, a capture zone was simulated for pumping well PW-1. A series of groundwater particles were simulated around the well to track advective groundwater flow in each of the two model layers. The analytical

exercise of tracking groundwater particles simulates the movement of groundwater particles as they travel along the hypothetical flow lines established by the pumping well. Tracking groundwater particles for a given time period shows the path that the groundwater may take to arrive at the pumping well during the time period modeled.

Figure 10-6 shows the pathlines of groundwater particles at a time of five years after the start of pumping for a four-extraction-well scenario, where extraction wells are located near PW, OS, 11, and JS. For the scenario depicted on Figure 10-6, capture of groundwater from the impacted area of the site was achieved with a combined total groundwater extraction rate of 37 gpm (i.e., 12 gpm at PW, 10 gpm near OS, 7.5 gpm near 11, and 7.5 gpm near JS). For the capture zone analysis, the effects of the concrete pad (i.e., reduced recharge and evapotranspiration) were removed from the model because the concrete pad will be removed during the remedial action for soil and sediment. Within each of the individual capture zones on Figure 10-6 are arcuate patterns formed by small arrows aligned in the direction of groundwater flow. These arrows represent one-year travel times (i.e., a particle of groundwater at the arrows will take one year to reach the pumping well). The five-year simulation in Figure 10-6 shows that well PW will capture the majority of the water within the area of lead and cadmium impact in less than one year. This is demonstrated by the one-year travel time zone (represented by the first arc) which extends out near Wells IS and ID and the eastern property boundary.

11. GEOCHEMICAL EVALUATION

11.1 Overview

This section contains descriptions of some of the prominent geochemical features that affect the concentrations of constituents in groundwater. The geochemical evaluation was performed to address issues raised by the EPA regarding the capacity of the aquifer at the NL site to assimilate constituents in groundwater and the permanence of the geochemical reactions that have resulted in reductions in mass of lead and cadmium in groundwater.

The battery acid released locally into the soil when the site was in operation carried with it many of the constituents that have been detected in groundwater. The acid reacted with soil and groundwater. Naturally occurring geochemical reactions buffered the acid and some of the entrained constituents (i.e., inorganic) were sorbed into the aquifer material and were permanently removed from groundwater. Other constituents formed insoluble compounds or complexes and precipitated from solution. These reactions are documented in the literature [Kinniburgh, et al, 1976; Bodek, 1988, Evans, 1989, Smith, et al, 1995; etc.]. The remaining constituents that did not either precipitate or sorb are potentially present in groundwater. As stated in the Phase I Memorandum, the dominant geochemical reactions that occurred among the inorganic constituents were sorption and precipitation reactions, which reduced constituent solubility and resulted in a decrease in the mass of constituents in groundwater. The analyses performed to evaluate the reactions are discussed further below.

11.2 Analyses

Soil samples obtained from three locations were submitted to an analytical laboratory for geochemical analyses. The samples were obtained during the installation of monitoring wells 26, 28 and 29. A duplicate soil sample prepared from the soil obtained from monitoring well 28 was also analyzed. Each soil sample was obtained from within the water column and as near to the water table as possible. The analyses performed on the samples included: (i) thin-section petrography to identify iron and manganese coatings in soil; (ii) x-ray diffraction to evaluate the presence of lead-bearing materials in the coatings; and (iii) sequential extraction of lead and cadmium using progressively more aggressive extraction solutions to evaluate the permanence of the reactions between lead or cadmium and aquifer soils.

The results of the thin section petrography analyses performed by Core Laboratories (Core Lab) of Carrollton, Texas are presented in Appendix C. The results indicated the presence of iron and manganese oxide/hydroxide coatings in soil (Appendix C). As stated in *Phase I Groundwater Evaluation Technical Memorandum* and in the literature [Kinniburgh, et al, 1976; Yong, et al, 1993], these coatings are strong adsorption sites for inorganic constituents such as lead and cadmium.

To preliminarily evaluate the possible presence of inorganic constituents in the coatings, Core Lab performed x-ray diffraction analysis on the samples to observe lead as an indicator parameter (Table 11-1). The results of the x-ray diffraction analyses indicated that lead phosphate was possibly present in the some of the coatings at trace concentrations (i.e. less than five percent); however, the analytical technique was not sufficiently sensitive to confirm the presence of lead phosphate in the coatings at the trace concentrations observed.

To further evaluate the possible presence of inorganic constituents (i.e., lead and cadmium) in the iron and manganese oxide/hydroxide coatings and other aquifer materials, Toxscan, Inc., of Watsonville, California performed speciation analyses, using lead as an indicator parameter, and sequential-extraction analyses for both lead and cadmium on the soil samples. The speciation analyses were performed to identify the types of compounds and complexes in which lead, as the indicator, was associated. The sequential extractions were performed using progressively more aggressive extraction fluids to strip lead and cadmium from the various aquifer materials. After each extraction event, the extraction fluid was analyzed for the presence of lead and cadmium. The results (Table 11-2) indicated that a very aggressive extract fluid was needed to dissolve the iron and manganese hydroxide coatings and release lead and cadmium into the extraction fluid (see Appendix D for detailed laboratory report).

The results of these analyses indicate that iron and manganese oxide/hydroxide coatings are present in the soil at the site and that when the coatings are dissolved in acid, the lead and cadmium that was adsorbed in the coatings are released (Table 11-2). According to the results of the analyses performed in this project, an aggressive extraction fluid having a pH of less than 2 was needed to effectively dissolve the iron and manganese hydroxide coatings in the soil samples and thus to release lead and cadmium from the coatings. These results are consistent with findings presented by other researchers where significant amounts of lead remained bound to coatings in soil

even when exposed to extraction fluids having pH values as low as 1.5 [Chaney, et al, 1985; Yong, et al, 1993].

11.3 General Geochemical Parameters

Aquifer materials are effective in removing lead and cadmium from groundwater. Results from analyses of inorganic constituent concentrations and general water quality parameters (Tables 11-2 and 11-3) in groundwater samples obtained from locations within the zone of impact were compared with results from analyses of total metals concentrations associated with aquifer material (i.e., soil). These results indicate that groundwater samples from monitoring wells 26, 28 and 29 contained dissolved lead concentrations ranging from 1.4 to 49.2 ug/L, dissolved cadmium concentrations ranging from 0.76 to 41.6 ug/L and pH values ranging from 2.9 to 5. As shown on Table 11-2, soil samples from these wells contained total lead concentrations ranging from 1.9 to 4.1 mg/Kg, cadmium concentrations less than 0.1 mg/Kg and pH values ranging from 6.0 to 7.3. The constituent concentrations measured in the aquifer material are within the range of typical background values for these constituents (i.e. lead and cadmium concentrations of 10 to 67 mg/Kg and 0.1 to 3 mg/Kg, respectively; Pais and Jones, 1997).

Groundwater data from the site indicate that inorganic concentrations in groundwater decrease as pH values increase with distance from the center of the zone of impact. This results from decreases in inorganic concentrations that result from precipitation and/or sorption to the aquifer material, which increases as pH increases. Aquifer materials in contact with groundwater in monitoring wells 26, 28 and 29 do not appear to be significantly affected by the constituents in groundwater, because the concentrations of lead and cadmium in groundwater (i.e. ppb range) relative to naturally-occurring concentrations of these constituents in soil (i.e., ppm range) are sufficiently low that sorption and/or precipitation of lead and cadmium may be masked by the natural lead and cadmium content of soil. At the same time, the aquifer materials appear to be effective at removing lead and cadmium from groundwater through these sorption and precipitation mechanisms, as evidenced by the continually decreasing concentrations of lead and cadmium within the shrinking zone of impact (i.e., decreasing mass).

11.4 Permanence of Geochemical Reactions

The aquifer material is a sink for lead and cadmium and the sorbed inorganics are resistant to leaching. This relationship is commonly described in the literature [EPA, 1991; Kinniburgh, et al, 1976; Yong, et al, 1993; Evans, 1989; Smith, et al, 1995; changes et al, 1995, etc.]. Furthermore, this relationship was demonstrated by the results from sequential extraction analysis for lead and cadmium in the aquifer materials, which was performed to assess the association of lead with particular phases of the aguifer material (Table 11-2) The sequential extraction analysis uses extraction solutions of increasing strength to strip the lead associated with the exchangeable. carbonate, iron-manganese oxide/hydroxide, organic and residual phases, respectively. The results indicated that the lead in each sample was predominantly (84 to 92 percent of the detectable lead) associated with the residual phase of the aquifer material, which could include lead oxides, phosphates, and sulfides. The lead in this residual phase is very resistant to leaching by low pH (<2) solutions, as evidenced by the fact that this phase is the last lead phase addressed in the sequential extraction analysis and this phase requires the strongest acidic stripping solution. This is consistent with the findings of other research presented in the literature.

Results also indicated that the remaining lead (8 to 16 percent of detectable lead) in the aquifer materials was associated with carbonate and iron and manganese oxide/hydroxide phases (also consistent with the literature). The lead associated with carbonate phases likely represents lead that has precipitated through the formation of lead carbonate solids, whereas the lead associated with iron and manganese oxide/hydroxide phases represents lead that has sorbed to reactive surface sites on these materials or coprecipated with the iron and inorganic oxide/hydroxide phases. The lead in these phases is resistant to leaching by groundwater, and required acidic stripping solutions to remove the lead associated with both phases. Additionally, the neutralizing capacity of the aquifer material reduces the potential for these phases to be leached by low pH groundwater.

11.5 Soil Sorption Capacity

The aquifer material has a significant capacity for the immobilization of lead and cadmium by adsorption. For example, the capacity of aquifer material to

immobilize lead can be estimated using the following relationship (Zimdahl and Skogerboe, 1977):

Capacity of soil to sorb lead (mol/g) = (2.81E-6)(CEC) + (1.07E-5)(pH) - 4.93E-5

where CEC = cation exchange capacity in meq/100g of soil, and pH = pH of soil.

Using a mean pH value of 6.5 for aquifer material and a mean CEC of 1.71 meq/100g (Table 11-3), the capacity of the aquifer to sorb lead is approximately 2.51E-5 mol/g, (5,190 mg/Kg). Therefore, lead can be permanently sorbed to soil up to a soil-lead concentration of 5,000 ppm without significant future desorption. If all of the lead in the groundwater at the site were sorbed into the aquifer material, the resultant increase in the concentration of lead in soil would be one or two ppm (Table 2-1) and the final concentration of lead on the soil after sorption would be in the range of background concentrations (i.e., 10 to 67 ppm). Furthermore, because the concentration of lead in groundwater relative to the soil's sorption capacity is very small, the capacity of the aquifer material at the site to sorb lead will never be exceeded. A similar relationship is true for cadmium. This relationship helps to explain why the zone of impact at the site is stationary and why concentrations of lead and cadmium have decreased without any active remediation being performed (i.e., mass in groundwater is decreasing).

12. FATE AND TRANSPORT MODELING

12.1 Overview

This section describes limited fate and transport modeling performed using the flow model described in Section 10. Visual MODFLOW's link to MT3DMS, the fate and transport model developed by the University of Alabama, was utilized for the simulations. This section describes the methods used to conduct simple transport simulations at the site, and also includes results and conclusions of the simulations.

Although the simulations were not performed to conclusively demonstrate environmental fate and transport of site contaminants through rigorous geochemical modeling, the simulations demonstrate that pH is an important factor related to declining lead and cadmium concentrations at the site. The modeling also provided additional evidence that lead and cadmium cannot effectively be extracted from the aquifer by pumping groundwater.

12.2 Transport Simulations

The flow model described in Section 10 was used as the base model upon which fate and transport simulations were performed. Input parameters for the flow model were previously described. Input parameters for MT3DMS included a longitudinal dispersion coefficient of 10 ft. MT3DMS establishes a default horizontal dispersion value equal to $^{1}/_{10}$ the value of longitudinal dispersion, or 1 ft. Bulk density was set at 75.3 kg/ft³ and sorption was simulated with a linear isotherm. Kinetic reactions were not simulated. Starting concentration data were derived from the early sampling results obtained at the site. For lead, this data set was the 1983 data. Cadmium starting concentrations in the model were based on the 1989 sampling results.

Recognizing the relationship between pH and distribution coefficient (Kd), Kd values in the model varied with pH and were established using the algorithms presented in Volume 2 of EPA's recent report on Kd (EPA, 1999). Specifically, Kd zones in the lead and cadmium transport simulations were established using the following relationships, which are presented in Appendix F and Appendix C of Volume 2 of the Kd report for lead and cadmium, respectively:

$$Kd_{lead} (ml/g) = 1639 - 902.4(pH) + 150.4(pH)^2$$

$$Kd_{cadmium} (ml/g) = -0.54 + 0.45(pH)$$

Two simulations were performed for each of the two parameters of concern for the model, lead and cadmium. For lead, the first simulation was from 1983 to 1989. For cadmium, the first simulation started at the beginning of 1989 and terminated at the end of 1989 to synchronize the subsequent simulations that ran from 1989 to 1998 for both lead and cadmium. pH values for inclusion in the above algorithms were based on measured pH during the 1983 and 1997 sampling events. These two data sets were chosen for their completeness.

The results of the simulations that ended in 1989 were scaled to account for the established relationship between pH and measured concentrations of lead and cadmium (i.e., as pH rises, lead and cadmium concentrations decrease). The scaling factor was determined using the following relationship:

$$C_{1997-1998} = C_{1983}(\log^{pH}_{1983}/\log^{pH}_{1997})$$

This relationship recognizes that pH change is logarithmic, and provides a simple way to account for declining concentrations at the site as a result of changes in pH.

12.3 Results

Figures 12-1 and 12-2 show the simulated lead and cadmium concentrations, respectively, in 1989 at the conclusion of the first simulation. The results show very little change in the distribution and magnitude of lead and cadmium concentrations from their initial values. Simulated transport from 1989 to 1998 using the scaled concentrations results in the diagrams provided as Figures 12-3 (lead) and 12-4 (cadmium). With minor variations in distribution, concentrations significantly declined, which is consistent with what has been observed in the data. The following summary for monitoring well SD (as an example) demonstrates the decrease in the concentrations of lead and cadmium in the area of the site that has consistently exhibited the highest concentrations.

00.01.19

WELL SD:

Pb 1983 _{measured}	2960 ug/L
Pb 1998 _{simulated}	251 ug/L
Pb 1998 _{measured}	25 ug/L
C4 1000	063
Cd 1989 _{measured}	963
Cd 1998 _{simulated}	104
Cd 1998 _{measured}	184

The effect of pH on the sorption and precipitation of lead and cadmium accounts for much of the observed decline in concentrations of these inorganics. For lead concentrations at monitoring well SD, the pH relationship underestimates the decline in concentrations. For cadmium, the pH relationship slightly overestimates the observed decline at monitoring well SD. Overall, however, increasing pH is shown to be an important factor in the reduction of mass of lead and cadmium in groundwater. The variation between simulated concentrations and measured concentrations is caused by simplifying assumptions used in the model that do not exactly match the geochemical processes that occur at the site.

The model predicts that lead and cadmium are not significantly transported, as shown by the lack of change in the distribution of lead and cadmium in the MT3DMS model, which is consistent with observed trends. Instead, lead and cadmium are sorbing to the unconsolidated sediments in the shallow unconfined aquifer and are thereby rendered immobile. This occurrence is further shown in Figure 12-5, which represents a simulated pump-and-treat scenario. Cadmium was modeled in the scenario, because it is the more soluble and mobile of the two parameters.

Simulated pumping of the simulated extraction well near the location of PW, in the center of the largest observed concentrations at the site, from 1989 to 1998, had no observable effect on either the concentration or distribution of cadmium. Because simulated pumping did not affect cadmium at a time when concentrations were higher and pH lower, there was no need to simulate a future pumping scenario wherein pH becomes progressively higher and constituent mobility further decreases. Because pumping has no significant effect on constituent concentrations, the improvement in groundwater quality that has been observed would be expected to continue at approximately the same rate whether or not a pump-and-treat remedy is implemented.

These results support the conclusion that cadmium (and lead) are immobile and cannot be significantly recovered by pumping and treating.

13. GROUNDWATER RISK CONSIDERATIONS

13.1 Overview

A risk assessment was performed for the site and presented in the RI. A review of the results of the risk assessment indicated that on-site conditions that existed at the time the risk assessment was performed posed risk, but off-site risks were expected only under a future use scenario. In the risk assessment, it was assumed that constituents observed on-site would migrate off-site at relatively high concentrations. assumption was described in the risk assessment as unrealistic as it was further stated that natural processes such as adsorption, degradation, volatilization and/or dilution would decrease constituent concentrations below the concentrations used to calculate risks. Based on a description of the methods used to calculate possible risks related to groundwater, it was observed that the concentrations of the constituents considered were based on site conditions that prevailed at the time the risk assessment was performed and the unrealistic assumptions regarding future off-site constituent concentrations. Since the risk assessment was prepared and after 16 years of monitoring groundwater quality, it has become clear that not only has groundwater quality improved significantly, but also that the constituents have not migrated to areas where off-site exposure could occur (Figures 7-6 through 7-16). potential risks presented in the RI overstated actual risks then, and actual risks are overstated more so, now. As described below, recognition of this overstatement of risk has contributed, in part, to the conclusion that a pump-and-treat remedy for groundwater is unwarranted at the NL site.

13.2 Actual Risk Potential

In the risk assessment it is stated that the VOCs 1,1-dichloroethene and vinyl chloride and the inorganics arsenic and beryllium in specific locations dominantly caused the estimation of significant potential risks related to groundwater. It is also stated that the inorganics in groundwater can be expected to be adsorbed to subsurface soil and not be significantly transported site-wide or off-site. However, the risk calculations did not adequately address this fact. Although, it was stated in the risk assessment that the potential for exposure through the groundwater pathway was overestimated.

Through 16 years of monitoring, data have been obtained that verify that inorganics are not transported significantly site-wide or off-site. Also, the frequency of detection of the VOCs and the concentrations of the VOCs have declined significantly through the monitoring period (Section 7). Therefore, the quality of on-site and off-site groundwater measured in 1998 is far better than it was estimated to be in the risk assessment.

The pump-and-treat remedy required by the ROD was predicated on groundwater quality observed in the 1980's. The recently measured zone of impact does not significantly extend to off-site areas (i.e. either the constituent concentrations are below MCLs or safe drinking water standards, or the area affected is very small and in fact too small for any reasonable risk of exposure). Therefore, no routes of exposure or potential receptors exist off-site. On-site, where constituent concentrations exceed RAOs, institutional controls can be implemented to prevent any possible exposure to constituents in groundwater. Therefore, from an exposure potential viewpoint, with institutional controls, there are no current or future risks related to groundwater.

13.3 Need for Remediation

Because human exposure to groundwater constituents can be prevented, there are no current or future risks. Where there are no current or future risks, there is no need to remediate groundwater. Furthermore, where there are no current or future risks, there is no need to hydraulically control groundwater flow. That is, it is not necessary to extract groundwater to control groundwater flow direction, because groundwater is not significantly transporting constituents. It was also found in this evaluation that lead and cadmium cannot be recovered from the subsurface by extracting groundwater. Therefore, it is clear that the pump-and-treat remedy is not needed to address risks, and if implemented, will fail to be effective.

14. CONCLUSIONS

14.1 Overview

The results of the analyses performed for groundwater provide substantial evidence that a pump-and-treat remedy is not only unwarranted at the NL site, but also is incapable of remediating groundwater at the site. Furthermore, it is unnecessary as a tool for the control of constituent migration through hydraulic manipulation of the water table because constituents are not migrating. Also, the evidence shows that natural geochemical factors are effectively resulting in improvement of groundwater quality without any human intervention. Because the zone of impact is not migrating and because the concentrations of constituents in groundwater are decreasing, constituent mass in groundwater is also decreasing. Current groundwater conditions are improved over conditions that prevailed in the past, and groundwater quality is expected to continue to improve in the future. The conclusions made from the results of the Phase II groundwater evaluation are presented below.

14.2 Project Background and Historic Data

- The former release of battery acid is the primary cause for the historic zone of impact in groundwater.
- After monitoring groundwater quality periodically for 16 years it is clear that
 the mass of constituents in groundwater is decreasing and that groundwater
 quality is improving.
- This improvement occurred naturally.

14.3 Former Septic Bed Evaluation

• The former septic bed is not a significant source of constituents in groundwater.

14.4 Groundwater and Soil Samples

- The results of the analysis of groundwater samples confirm that the zone of impact is stationary and shrinking (i.e., constituent mass in groundwater is decreasing).
- Constituents are not migrating significantly either on or off the site.
- Constituents in groundwater at the NL site are not the cause of lead detected in samples obtained from private wells.
- Lead and cadmium are currently the only constituents in groundwater that warrant further consideration relative to the possible implementation of a remedy.

14.5 Aquifer Test

- The hydraulic parameters defined by GeoSyntec and Geraghty & Miller are in general agreement. Therefore, aquifer hydraulic parameters are reasonably well defined.
- The results of chemical evaluations performed during the aquifer test provide evidence that lead and cadmium cannot be significantly removed from the aquifer.

14.6 <u>Capture Zone Evaluation</u>

- Four extraction wells operating at a combined flow rate of approximately 37 gpm would be sufficient to extract groundwater from the areas of the site containing groundwater impacts.
- The results of the capture zone evaluation address the extraction of groundwater only, and do not address the feasibility of removing lead and cadmium from the aquifer.

14.7 Geochemical Evaluation

- Naturally occurring geochemical reactions have resulted in significant improvement of groundwater quality.
- Coatings on soil particles, such as iron and manganese oxide/hydroxide coatings which are significant adsorption sites, were confirmed to be present at the site.
- The capacity of the aquifer to assimilate constituents in groundwater is sufficient to accommodate far greater amounts of constituents than are present in groundwater.
- The mass transfer of lead and cadmium from groundwater to aquifer material is desirable and permanent.
- The inability to extract lead and cadmium from the subsurface, as observed during the aquifer test, is explained by the strong tendency for the parameters to sorb to coatings in soil.

14.8 Fate and Transport Modeling

- The limited fate and transport evaluation supported statements made herein and in the Phase I Memorandum regarding the immobility of constituents.
- By scaling lead and cadmium concentrations based on measured pH improvement, the evaluation reasonably accounted for the observed naturally-occurring improvement in groundwater quality that has occurred since 1983.
- The results of the limited modeling supported the conclusion that the
 extraction of lead and cadmium from the aquifer by pumping groundwater is
 not feasible.

14.9 Groundwater Risk Considerations

- No off-site risks currently exist or will exist in the future, because there is no pathway between on-site constituents and any possible off-site receptors.
- Any possible exposure to constituents in groundwater can be prevented through the use of institutional controls.
- Based on a lack of risks, no remediation (other than institutional controls and monitoring) is necessary to address risks. Specifically, it is unnecessary to attempt to remove lead and cadmium from the subsurface because they are being effectively and permanently sorbed onto soil. Also, extracting groundwater for hydraulic control of lead and cadmium migration is not needed because lead and cadmium are not migrating.

14.10 <u>Discussion of Conclusions</u>

Based on the results of the aquifer test, it is evident that extraction of groundwater at the site to remove lead and cadmium, the only remaining constituents that warrant further consideration, will not be effective in removing mass or preventing migration of contaminants to potential off-site receptors. The results of chemical analyses of samples obtained at various times during the performance of the aquifer test show that the concentrations of lead and cadmium trend steadily toward very low levels as pumping progresses. This is likely due to the tendency for lead and cadmium to adsorb to coatings on soil particles. Also, as the size of the capture zone increases, dilution occurs. Based on this information, the pump-and-treat technique for the remediation of groundwater at the site will not be effective. Furthermore, the extraction of groundwater is not necessary to provide hydraulic control for the prevention of the migration of lead and cadmium. Because the zone of impact has been shown to be stationary and shrinking over time, it is evident that no net migration of lead and cadmium has occurred or will occur in the future. It is clear that the mass of lead and cadmium in groundwater is naturally declining. It is also clear that a reconsideration of the pump-and-treat remedy is warranted.

Several geochemical factors are believed to be the cause of the naturallyoccurring removal of lead and cadmium from groundwater. The strong tendency for lead and cadmium to adsorb to coatings on soil particles is a primary reason for the immobility of these inorganic constituents and for their decreasing mass in groundwater. The factors that prevented lead and cadmium from being extracted during the aquifer test are also responsible for the stationary location of the zone of impact and the decrease in constituent concentrations within the zone (shrinking zone). While pH-dependent adsorption is likely the most prominent of the geochemical factors that are resulting in a natural improvement in groundwater quality at the site, other factors identified herein and in the Phase I Memorandum, such as precipitation, also contribute to the immobility of lead and cadmium and their disappearance from groundwater. Evidence of precipitation of lead as lead phosphate may be indicated in the results of the x-ray diffraction tests performed.

Based on the results of the evaluations performed, it is evident that the natural transfer of lead and cadmium from groundwater to the aquifer material is permanent. Lead and cadmium adsorb strongly in the coatings on soil particles. In this evaluation, neither lead nor cadmium were mobilized from the coatings until the coatings were dissolved. From the analyses performed, the coatings were not dissolved until a very aggressive test fluid was used (pH \leq 2). In nature, there is no phenomenon that could reasonably be expected to occur that would cause the groundwater at the site to take on the characteristics of the aggressive test fluid. Therefore, as the trend toward higher pH with time is expected to continue, continued decreases in the mass of lead and cadmium are expected.

Because groundwater quality has improved, the degree of risk posed by constituents in groundwater has correspondingly decreased. There are no off-site risks related to groundwater. Given the continuing improvement observed in groundwater quality, it is expected that any existing risks (i.e., on-site risks) possibly posed by constituents in groundwater will diminish. With institutional controls, any possible exposure to constituents on-site can be prevented. With the prevention of on-site risks through institutional controls, and the absence of off-site risks, there will be no risks related to groundwater. The improvement in groundwater quality and the diminishment of risks has occurred without any active remedy for groundwater being performed. Therefore, it is clear that a pump-and-treat remedy is unwarranted. Furthermore, it was shown that the pump-and-treat technique will fail to be effective; therefore it is not only unwarranted, but also it is an inappropriate remedy for the NL site.

Int dixand to [] greater tran 100 ppt. Although no active remedial action is needed for groundwater, the evaluation of an alternative remedy that will speed the improvement of groundwater quality at the site may be useful. Monitoring of groundwater quality will continue to be performed, as described in Section 15.

15. RECOMMENDATIONS

The weight of evidence presented herein and in the Phase I Memorandum, shows that the pump-and-treat remedy selected for groundwater is inappropriate to address current groundwater conditions at the NL site. The evidence shows that the pump-and-treat technique will not be effective. From a risk perspective, no active remedy is needed. Therefore, the Group requests that the EPA consider a revision to the ROD-selected pump-and-treat remedy. To speed the naturally-occurring improvement of groundwater quality at the site, the Group proposes to implement an alternative remedy for consideration by the EPA. The alternative remedy that is expected to perform optimally for groundwater at the NL site is augmentation of natural geochemical reactions through injection of stabilizing agents to treat groundwater insitu, combined with monitoring. The injection of stabilizing agents (i.e. alkalinity) would enhance naturally-occurring geochemical reactions. The stabilizing agents would buffer pH and stimulate the precipitation and sorption of lead, cadmium, and other inorganics. By using this technique, the remedy for groundwater could be completed in the shortest time frame.

Based on the results of the Phase I and II groundwater evaluations, significant improvement of groundwater quality was observed and it is expected to continue with or without remedial actions being performed. However, the Group will perform the remedy for soil and sediment described in the Final Design Report Remedial Design for Soil and Sediment [GeoSyntec, 1999] in calendar year 2000. The remedy for soil and sediment includes the removal of soil and sediment from portions of the site that contain lead at concentrations above 500 ppm. Following the performance of the remedy for soil and sediment, any impact that the lead-containing soil may have had on groundwater will be eliminated and groundwater quality may more rapidly improve. Therefore, with the possible implementation of the proposed alternative remedy for groundwater, the Group recommends that monitoring of groundwater quality at the site be performed during the five-year project review period established by EPA for Superfund sites, or until RAOs are achieved, whichever comes first. Based on the observed immobility of the zone of impact in groundwater, a frequency of semi-annual monitoring (i.e. spring and fall, beginning in the spring of 2000) will be more than adequate to monitor the expected natural and possibly augmented improvement (if the alternative remedy is performed) in groundwater quality. It is recommended that the parameters to be monitored include as a minimum pH, total and dissolved lead, cadmium, VOCs, and radiological parameters. It is further recommended that the

sampling and quality control procedures established in the SAMP and the QAPP be generally used throughout the monitoring program.

The Group recommends that a plan be prepared to document, in detail, the scope of the monitoring program described above. In the plan, the wells to be monitored will be identified and additional detail regarding chemical analyses and data evaluation will be provided. Also, provided that the EPA agrees, the Group recommends that a pilot-scale demonstration of the alternative remedy be performed. Any future activities that may be needed will be discussed with the EPA following the performance of the pilot-scale demonstration of the alternative remedy.

16. REFERENCES

Bodek, I., Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H., Environmental Inorganic Chemistry: Properties, Process and Estimation Methods, Pergamon Press, Elmsford, NY, 1988.

Duffield, G.M., HydroSOLVE, Inc., AQTESOLVTM for WindowsTM: "The Leading Aquifer Test Analysis Software", May 1999.

Evanko, C.R. and Dzombak, D.A., "Technology Evaluation Report: Remediation of Metals - Contaminated Soils and Groundwater", revised manuscript submitted to USEPA Groundwater Remediation Technologies Analysis Center (GWRTAC), Pittsburgh, PA, October 1997.

Evans, L.J., "Chemistry of Metal Retention by Soils", Environmental Science and Technology, 23:1046-1056, 1989.

GeoSyntec Consultants, "Phase I Ground-Water Evaluation Technical Memorandum, NL Industries, Inc., Superfund Site, Pedricktown, New Jersey", December 1997.

GeoSyntec Consultants, "Phase I Groundwater Evaluation Technical Memorandum", NL Industries Superfund Site, Pedricktown, New Jersey, 1998.

GeoSyntec Consultants. "Capture Zone Evaluation Plan", NL Industries Superfund Site, Pedricktown, New Jersey, 1999.

Geraghty & Miller, Inc. "Hydrogeologic Study and Design of Groundwater Abatement System at NL Industries, Inc.", Pedricktown, New Jersey Plant Site, 1983.

Jacob, C.E., "Notes on Determining Permeability by Pumping Tests Under Water-Table Conditions", U.S. Geological Survey Mimeo Rep., 1944.

Kinniburgh, D.G., Jackson, M.L., and Syers, J.K., "Adsorption of Alkaline Earth, Transition and Heavy Metal Cations by Hydrous Oxide Gel of Iron and Aluminum", Soil Science Society of American Journal, 40:796-800, 1976.

McDonald, Michael, G., and Arlen Harbaugh. 1983'. "A Modular Three-Dimensional Finite Difference Ground-Water Flow Model", Techniques of Water-Resources Investigations of the United States Geological Survey, Open-File Report 83-875.

National Climatic Data Center, Local Climatological Data, Wilmington, DE @, National Oceanic and Atmospheric Administration Publication, May 1999.

Neuman, S.P., "Effect of Partial Penetration on Flow in Unconfined Aquifers Considering Delayed Gravity Response", Water Resources Research, Vol. 10, No. 2, pp. 303-312, 1974.

O'Brien & Gere. 1990. "Remedial Investigation", National Smelting of New Jersey, Inc., NL Industries, Inc. Site.

Pais, I. and Jones, Jr., J.B., "The Handbook of Trace Elements", 1997, CRC Press, 223 pp.

Shacklette and Boerngen, "Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States", U.S. Geological Survey Professional Paper 1270, 1984.

Smith, L.A., Means, J.L., Chen, A., Alleman, B., Chapman, C.C., Tixier, J.S., Jr., Brauning, S.E., Gavaskar, A.R., and Roger, M.D., Remedial Options for Metals - Contaminated Sites, Lewis Publishers, Boca Raton, FL 1995.

Streltsova, T.D., "Well Testing in Heterogeneous Formations" John Wiley & Sons, New York, 413p., 1988

Tuin, B.J.W. and Tels, M., "Extraction Kinetics of Six Heavy Metals from Contaminated Clay Soils", Environmental Technology, 11:541-554, 1990.

USEPA, "Selection of Control Technologies for Remediation of Lead Battery Recycling Sites", EPA/540/2-91/014, July, 1991.

USEPA, "Understanding Variation in Partition Coefficient, K_d, Values", Volume II: Review of Geochemistry and Available K_d Values for Cadmium, Cesium, Chromium,

Lead, Plutonium, Radon, Strontium, Thorium, Tritium (³H), and Uranium, EPA 402-R-99-004B, August, 1999.

Waterloo Hydrogeologic, Inc., 1999. Visual MODFLOW: The fully integrated, three-dimensional, graphical modeling environment for professional groundwater flow and contaminant transport modeling.

Yong, R.N., Galvez-Cloutier, R. and Phadungchewit, Y., "Selective Sequential Extraction Analysis of Heavy-Metal Retention in Soil", California Geotechnical Journal, 30(5): 834-847, 1993.

Yong, R.N., Phadungchewit, Y., "pH Influence on Selectivity and Retention of Heavy Metals in Some Clay Soils," California Geotechnical Journal, 30(5): 821-833, 1993.

Yong, R.N., Warkentin, B.P., Phadungchewit, Y. and Galvez, R., "Buffer Capacity and Lead Retention in Some Clay Materials", Water, Air and Soil Pollution, 53: 53-67, 1990.

Zimdahl, R. L. and Skorgerboe, R. K., Dec. 1977, "Behavior of Lead in Soil", ES&T, Vol. 11, NO. 13, 1202-1207 pp.

TABLE 1-1

REMEDIAL ACTION OBJECTIVES¹ (RAOs) FOR GROUNDWATER

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	NJMCL ²	NJGWQS³	PQL ⁴	MCL ⁵
Organic Contaminants (ppb)				
Acetone	•	700	NA	
Bis-(2-ethylhexyl)phthalate	4	3	30	•
Chloroform	•	6	1	-
1,2-Dibromomethane	-	-	-	-
1,1-Dichloroethane	<u>-</u>	70	-	-
1,1-Dichloroethylene	2	1	2	7
1,2-Dichloropropane	5	0.5	1	.5
Ethylbenzene	700	700	5	700
Naphthalene	_	-	-	-
N-Nitroso-di-n-propylamine	-	0.005	20	-
Tetrachloroethylene	1	0.4	· 1	5
Toluene	1,000	1,000	5	1,000
1,1,1-Trichloroethane	26	. 30	. 1	200
1,2,4-Trimethylbenzene	-	-	-	-
1,3,5-Trimethylbenzene				÷
Vinyl Chloride	2	0.08	5	2
Xylene(s) (total)	44	40	2	10,000
0-	· •	NA	1	-
m&p-	,	NA	2	-
Inorganic Contaminants		•	•	
(ppb)				
Antimony	6	2	20	6
Arsenic (total)	50	0.02	· 8	[~] 50
Beryllium	4	0.008	20	4
Cadmium	5	4	2	5
Chromium (total)	100	100	10	100
Copper	1300 ⁶	1,000	1,000	
Cyanide	200	200	40	200
Lead (total)	15 ⁶	5	10	-
Mercury (total)	2	2	0.5	2
Nickel (soluble salts)	100	100	10	100

ME0015-01/MD99690 TBL

TABLE 1-1 (continued)

	NJMCL ²	NJGWQS ³	PQL^4	MCL ⁵
Selenium (total)	50	50	10	50
Silver	-	NA	2	•
Thallium	2	0.5	10	2
Zinc		5,000	30	• .
Radiation ⁽⁷⁾				
Gross Alpha	15	15	-	15
Gross Beta	4	4	· -	4

¹ Remedial Action Objectives (RAOs) for groundwater are defined in the ROD [USEPA, 1994] as "to restore the contaminated unconfined aquifer to drinking water standards for all contaminants. Established remedial action objectives for each contaminant of concern for groundwater are listed in Table F." The information presented herein was obtained from Table F of the ROD.

² New Jersey Maximum Contaminant Levels (NJMCLs) are expressed in parts per billion (ppb) (N.J.A.C 7:10-16.7)

³ New Jersey Ground Water Quality Standards (NJGWQS) (N.J.A.C. 7:9-6) are expressed in ppb, except where noted.

⁴ The Practical Quantitation Levels (PQLs) are expressed in ppb. In accordance with N.J.A.C. 7:9-6.9(c), where a constituent standard (the criterion adjusted by the antidegradations policy and applicable criteria exemptions) is of a lower concentration than the relevant PQL, the Department shall not (in the context of an applicable regulatory program) consider the discharge to be causing a contravention of that constituent standard so long as the concentration of the constituent in the affected ground water is less than the relevant PQL. For any listed contaminant, the more stringent of the NJMCL, NJGWQS, or Federal MCL applies. If the PQL is greater than the NJMCL, NJGWQS or the MCL, then the PQL applies.

⁵ Federal Maximum Contaminant Levels (MCLs) are expressed in ppb, except where noted.

⁶ New Jersey Action Level.

⁷ Federal MCL expressed in picocuries/liter (pCi/L).

TABLE 1-2

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

TASK DESCRIPTION

- Install 12 new monitoring wells
- Sample new wells and analyze for VOCs, radiological parameters, total and dissolved lead and cadmium
- Sample existing wells BR, 11, OS, OD, NS, ND, 12, JS, JD, SS, SD and analyze for VOCs and total and dissolved lead and cadmium
- Sample eight private wells and analyze for total and dissolved lead and cadmium
- Perform former septic bed evaluation
- Obtain soil samples for analysis of radiological parameters
- Perform landfill siting evaluation
- Perform aquifer test and capture zone evaluation
- Refine three-dimensional site hydrogeologic model
- Obtain three to five soil samples for geomembrane testing (e.g., adsorption/desorption/ speciation)
- Perform limited fate and transport modeling
- Review Risk Assessment related to groundwater
- Report results in Phase II technical memorandum

TABLE 2-1

LEAD AND CADMIUM MASS BALANCE

Phase II Groundwater Evaluation **NL Industries Superfund Site** Pedricktown, New Jersey

	PARAMETERS	1983	1988	1998
LEAD	Zone of Impact Volume	58,000,000 ft ³		8,000,000 ft ³
LEAU	Volume of Groundwater Impacted	130,000,000 gal		18,000,000 gal
	Average Concentration	200 ppb		60 ppb
	Mass of Lead in Groundwater	220 lbs/100 Kg		9 lbs/4 Kg
·	Mass of Soil in Zone of Impact	2.6 x 10 ⁷ Kg		3.6 x 10 ⁶ Kg
	Average lead concentration in soil after adsorption	0.4 mg/Kg		1.1 mg/Kg
CADMIUM	Zone of Impact Volume		37,000,000 ft ³	11,000,000 ft ³
CADWIUM	Volume of Groundwater Impacted	-	83,000,000 gal	25,000,000 gal
	Average Concentration		100 ppb	20 ppb
	Mass of Cadmium in Groundwater		70 lbs/32 Kg	14 lbs/6.4 Kg
	Mass of Soil in Zone of Impact		1.7 x 10 ⁷ Kg	5 x 106 Kg
	Average cadmium concentration in soil after adsorption		1.9 mg/Kg	1.3 mg/Kg

Notes: Assume average aquifer porosity of 30%. Assume average soil density of 105 lbs/ft³.

TABLE 2-2

CONSTITUENTS OF CONCERN IN GROUNDWATER¹

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Constituent Identification	Frequency of Detection ⁽²⁾ (No. of Detects/No. of Samples)	Range of Concentrations Detected ⁽²⁾ (µg/l)
Arsenic	34/51	<1 - 4,900
Beryllium	Not Reported	Not Reported
Lead	65/73	1 - 6,290
1,1-Dichloroethane	2/10	54 - 74
1,1-Dichloroethylene	2/10	170 - 210
Tetrachloroethene	2/10	180 - 210
Vinyl Chloride	1/10	76

- The constituents of concern listed above were identified by the USEPA for the purpose of assessing risk at the NL Industries site. The data were obtained during the RI and were summarized as Table A in the ROD.
- The frequency and range of detections shown in the table were provided by USEPA and do not include data from the Phase I or Phase II groundwater evaluations performed by GeoSyntec.

TABLE 3-1

SUMMARY OF LABORATORY ANALYTICAL RESULTS FORMER SEPTIC BED EVALUATION

Phase II Groundwater Evaluation NL Industries, Inc. Superfund Site Pedricktown, New Jersey

Sample Location Sample Designation	Septic Bed - West (SVSBW10-15070998)	Septic Bed - East (SBE10-15070998)
Date	07/09/1998	07/09/1998
Time Depth	1200 10 - 15 ft bgs	1000 10 - 15 ft bgs
COMPOUND (ug/kg) ⁽¹⁾		ga e
Chloromethane	<12	<∏
Bromomethane	<12	<u> </u>
Vinyl chloride	<12	বা
Chloroethane	<12	<u> </u>
Methylene chloride	<12	<u> </u>
Acetone	19	<□
Carbon disulfide	<12	<u> </u>
1,1-Dichloroethene	<12	<11
1.1-Dichloroethane	<12	<u> </u>
1,2-Dichloroethene (total)	<12	<11
Chloroform	<12	<11
1,2-Dichloroethane	<12	<11
2-Butanone	<u></u>	<11
1,1,1-Trichloroethane	<12	<11
Carbon tetrachloride	<12	<11
Bromdichloromethane	<12	
1,2-Dichloropropane	< 2	<11
cis-1,3-dichloropropene	<12	<11
Trichloroethene	<12	<11
Dibromochloromethane	<12	<11
1,1,2-Trichloroethane	<12	<]
Benzene	<12	<11
trans-1,3-Dichloropropene	<12	<11
Bromoform	<12	<11
4-Methyl-2-pentanone	<12	<11 .
2-Hexanone	<12	<11
Tetrachloroethene	<12	<11
1,1,2,2-Tetrachloroethane	<12	<11
loluene	<12	<11
Chlorobenzene	<12	·<11
Ethylbenzene	<12	<11
Styrene	<12	<11
Xylenes (total)	<12	<ii< td=""></ii<>
ois (2-Ethylhexyl) phthalate	380 J	61 J
Naphthalene	<390	<370
N-Nitrosodi-n-propylamine	<390	<370
,2,4-trimethylbenzene	ND	ND
,3,5-trimethylbenzene	ND	ND
Antimony	<0.32 N	0,36 BN
Arsenic	4.9	3.9
Beryllium	0.23 B	0.18 B
admium	- <0.09	<0.09
hromium	10.4	10.2
Copper	2.5 B	2.3 B
ead	14.0N*J	19.1N*J
Mercury	<0.12	<0.11
lickel	3,4 B	2.2 B
elenium	<0.86	<0.82
ilver	<0.09	<0.09
hallium	<1.1	<1.1
inc	9:1 E	8.9 E
yanide	<2.9	<2.8

Notes.

ft-bgs = feet below ground surface

⁽¹⁾ Laboratory results of soil samples analyzed according to Organic SOW 0LM01.9. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

ND = Not detected. The analysis of 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene was completed through a search of the primary, secondary, and tertiary m/z over the entire chromatographic range of the analysis. Standards were not analyzed for these two compounds. When these compounds were identified, an arbitrary response factor of "1" was used to calculate the results, as would be the case for a routine library search.

TABLE 3-2

CONCENTRTIONS OF RADIOLOGICAL PARAMETERS IN SOIL FORMER SEPTIC BED EVALUATION⁽¹⁾

Phase II Groundwater Evaluation NL Industries, Inc. Superfund Site Pedricktown, New Jersey

Sample Location	Sample Designation	Sample Date	Sample Time	\$ 50 C 22 Y 50 C	Gamma Spec Cesium - 137 (PCI/G)	The Association of the Control of th	Gross Beta	Uranium -	Uranium -	235/236	Gamma Spec Protactinium - 231 (PCI/G)	Thorium -	Potassium -
Septic Bed West	SVSBW10-15070998	07/09/1998	1200	10 - 15	<0.023	1.23+-3.54	20.4+-4.6			-	26.4 +- 12.8		4.01 +- 0.56
Septic Bed East	SVSBE10-15070998	07/09/1998	1000	10 - 15	0.033 +- 0.021	7.41+-4.74	19.5+-4.5			0.096 +- 0.088	1.78 +- 1.14	0.49 +- 0.36	4.69 +- 0.88

Sample Location	Sample Designation	Sample Date	Sample Time	Depth, It bgs	Gamma Spec Lead - 212 (PCI/G)	Gamma Spec Lend - 214 (PCI/G)	Lead - 210	Bismuth -	Bismuth -	Gamma Spec Thorium - 238 (PCI/G)	Gamma Spec Thorium - 231 (PCI/G)	Radium - 224	Gamma Spec Thallium - 208 (PCI/G)	Actinium -
Septic Bed West	SVSBW10-15070998	07/09/1998	1200	10-15	0.41 +- 0.07	0.32 +- 0:09		0.44 +- 0.24	0.29 +- 0.07				0.12 +- 0.03	0.31:+- 0.13
Septic Bed East	SVSBE10-15070998	07/09/1998	1000	10-15	0.32 +- 0.51	0.39 +- 0.07	0.32 +- 0.31	0.35 +- 0.26	0.28 +- 0.08	0.85 +- 0.79	0.16 +- 0.14	0:74 ±- 0.50		

⁽I) Laboratory results of groundwater samples analyzed using DOE EML HASL 300. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

TABLE 5-1

RATIONALE FOR NEW MONITORING WELL LOCATIONS AND DEPTHS

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

The state approximation of the	PARAMETRY CONTROL STORY CONTROL TO A STORY OF THE STORY O
MONITORING WELL	RATIONALE
22, 23	Evaluate groundwater quality on the eastern side of the former maufacturing area and near existing wells HS and HD
24	Evaluate groundwater quality in the first confined aquifer in the area northwest of the former manufacturing area
	Verify the continuity of the confining clay layer
26	Evaluate groundwater quality in the area between the former manufacturing area and the existing landfill Verify the continuity of the confining clay layer
·	Evaluate groundwater quality in the area between the former manufacturing area and the existing landfill
27,28	Evaluate groundwater quality beneath the concrete pad in the northeastern section of the former manufacturing area
	Evalauate subsurface soil quality and geochemical characteristics
29, 30	Evaluate groundater quality beneath the concrete pad in thecentral portion of the former manufacturing area
	Evalauate subsurface soil quality and geochemical characteristics
30, 31	Evaluate former septic bed as potential source of constituents in groundwater
33, 34	Evaluate the extent of groundwater constituents north of the NL landfill
	Evaluate subsurface soil quality and geochemical charcteristics
PW	To be used as the extraction well during the constant rate aquifer test
	Evaluate trends in constituent concentrations and water levels during the constant rate aquifer test
ow	Obtain groundwater level data during the constant rate aquifer test

TABLE 5-2

SUMMARY OF NEW WELL CONSTRUCTION DETAILS

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring Well	s Screened in the Un	confined Aquifer	
Monitoring Well	Casing Diameter (in.)	Well Depth ⁽²⁾	Screened Interval ⁽³⁾	Top of Casing Elevation ⁽⁴⁾
22	2	16.0	11.0 - 16.0	13.01
23	. 2	24.0	24.0 - 34.0	12.85
26	2	22.0	12.0 - 22.0	10.77
27	2	15.0	5.0 - 15.0	15.45
28	2	30.0	20.0 - 30.0	15.28
29	2	15.0	5.0 - 15.0	15.14
30	2	30.0	20.0 - 30.0	15.17
31	2	15.0	5.0 - 15.0	13.21
32	2	30.0	20.0 - 30.0	13.16
33	2	10.0	5.0 - 10.0	5.44
34	2	20.0	10.0 - 20.0	5.44
	Monitoring Wells	Screened in the First	Confined Aquifer	
Monitoring	Casing	Well	Screened	Top of Casing
Well	Diameter (in.)	Depth ⁽²⁾	Interval ⁽³⁾	Elevation ⁽⁴⁾
24	2	73.0	68.0 - 73.0	11.92
		Aquifer Test Wells		
PW	6	26.0	26.0 - 6.0	10.43
OW	2	26.0	26.0 - 6.0	10.71

- (1) Height of protective steel casing in feet above ground surface.
- (2) Depth to bottom of well in feet below top of casing.
- (3) Screened interval of well in feet below ground surface.
- (4) Top of casing elevation in feet above mean sea level.
- *Well is obstructed at approximately 11 feet below ground surface.

TABLE 5-3

SUMMARY OF SOIL SAMPLE ANALYSES AND TEST METHODS FOR SOIL SAMPLES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

ANALYTE	LABORATORY METHOD				
Quanterra Laboratories					
Volatile Organic Compounds	SOW 0LM01.9				
Base/Neutral/Acid Extratable Compounds	SOW 0LM01.9				
Total Metals	SOW 1LM04				
Sulfide (acid-insoluble)	SW846 9030A				
Carbonate Alkalinity	MCAWW 310.1				
Total Organic Carbon	SMCA Walkey-Blac				
Sufate	MCAWW 375.4				
Total Phosphorus	MCAWW 365.2				
Phosphate as P, ortho	MCAWW 365.2				
Percent Solids	MCAWW 160.3				
pH	SW846 9045C (MOD)				
Core Laboratories					
Thin Section Petrographic analysis	Laboratory Specific				
X-Ray Diffraction	Laboratory Specific				
FoxScan, Inc.					
Carbonate Cadmium	EPA 200.8				
Carbonate Lead	EPA 200.8				
Cation-Exchange Capacity	EPA 9081				
Extractable Cadmium	EPA 200.8				
Extractable Lead	EPA 200.8				
Iron/Manganeze Oxide/Hydroxide Lead	EPA 200.8				
Organic Cadmium	EPA 200.8				
Organic Lead	EPA 200.8				
Percent Solids	EPA 160.3				
pH	EPA 9045B				
Residual Cadmium	EPA 200.8				
Residual Lead	EPA 200.8				
Total Metals	EPA 6020				

TABLE 6-1

Concentrations of Total Lead in Soil

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Sample Location Sample Designation Date Time Depth	(SVSBW10-15070998) 07/09/1998	Septic Bed - East (SVSBE10-15070998) 07/09/1998 1000 10 - 15 ft bgs	Well 29 (SV2910-12071598) 07/15/1998 930 10 - 12 ft bgs	Well 28 (SV288-12071698) 07/16/1998 1110 8 - 12 ft bgs	Well 26 (SV2610-14072098) 07/20/1998 1500 10 - 14 ft bgs	Well 34 (SV34-050699) 05/06/1999 1030
COMPOUND (mg/kg) ⁽¹⁾						
Total Lead	14.0N*J	19.0N*J	1.8N*J	1.2N*J	2.7N*J	0.56 B

⁽¹⁾ Laboratory results of soil samples analyzed according to Inorganic SOW ILM04.

For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

ft bgs = feet below ground surface'

TABLE 6-2

Concentrations of Volatile Organic Compounds in Soil

NL Industries, Inc. Superfund Site Pedricktown, New Jersey

Sample Location	Septic Bed - West	Septic Bed - East	Well 29	Well 28	Well 26	Well 34
	SVSBW10-15070998	න්තම්බල්ලන් මිනියා නමා එමෙන් දෙමුණ .			2000 P. 600 S.	(SV34-050699)
Date	(3V3BW10-13070998 07/09/1998	07/09/1998	07/15/1998	07/16/1998	07/20/1998	05/06/1999
Time	1200	1000	930	1110	1500	1030
Depth	10 - 15 ft bgs	10 - 15 ft bgs	10 - 12 ft bgs	8 - 12 ft bgs	10 - 14 ft bgs	6 - 12 ft bgs
COMPOUND (ug/kg) ⁽¹⁾				<u> </u>		
Chloromethane	<12	<11	<12	<12	<12 J	<12
Bromomethane	<12	<11	<12	<12	<12	<12
Vinyl chloride	<12	<11	<12	<12	<12 J	<12
Chloroethane	<12	<11	<12	<12	<12	<12
Methylene chloride	<12	<11	<12	<12	<12 J	<12
Acetone	19	<11	<12	<12	<12	<12
Carbon disulfide	<12	<11	<12	<12	<12	<12
1,1-Dichloroethene	<12	<11	<12	<12	<12	<12
1,1-Dichloroethane	`<12	<11	<12	<12	<12	<12
1.2-Dichloroethene (total)	<12	<11	<12	<12	<12	<12
Chloroform	<12	<11	<12	<12	<12	<12
1.2-Dichloroethane	<12	<11	<12	<12	<12	<12
2-Butanone	<12	<11	<12	<12	<12	<12
1,1,1-Trichloroethane	<12	<11	<12	<12	<12	<12
Carbon tetrachloride	<12	<11	<12	<12	<12	<12
Bromdichloromethane	<12	<11	<12	<12	<12	<12
1,2-Dichloropropane	<12	<11	<12	<12	<12	<12.
cis-1,3-dichloropropene	<12	<11	<12	<12	<12	<12
Trichloroethene	<12	<11	<12	<12	<12	<12
Dibromochloromethane	<12	<11	<12	<12	<l2< td=""><td><12</td></l2<>	<12
1.1.2-Trichloroethane	<12	<11	<12	<12	<12	<12
Benzene	<12	<11	<12	<12	<12	<12
trans-1.3-Dichloropropene	<12	<11	<12	<12	<12	<12
Bromoform	<12	<11	<12	<12	<12	<12
4-Methyl-2-pentanone	<12	<11	<12	<Ï2	<12	<12
2-Hexanone	<12	<11	<12	<12	<12	<12
Tetrachloroethene	<12	<11	<12	<12	<12	<12
1.1.2,2-Tetrachloroethane	<12	<11	<12	<12	<12	<12
Toluene	<12	<11	<12	<12	<12	<12
Chlorobenzene	<12	<11	<12	<12	<12	<12
Ethylbenzene	<12	<11	<12	<12	<12	<12
Styrene	<12	<11	<12	<12	<12	<12
Xylenes (total)	<12	<11	<12	<12	<12	<12

⁽¹⁾ Laboratory results of soil samples analyzed according to Organic SOW 0LM01.9.

for a summary of USEPA laboratory analytical qualifiers, see Appendix F.

t bgs = feet below ground surface

Concentrations of Radiological Parameters in Soil⁽¹⁾

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Sample Location	Sample Designation	Sample Date	Sample Time	Depth, ft bgs	Gross Alpha (pCVL) ⁽¹⁾	Gross Beta (pCl/L) ^(f)
Septic Bed West	SVSBW10-15070998	07/09/1998	1200	10 - 15	1.23 +- 3.54	20.4 +- 4.6
Septic Bed East	SVSBE10-15070998	07/09/1998:	1000	10 - 15	7.41: +- 4.74	19.5 +- 4.5
26	SV2610-14072098	07/20/1998	1500	10 - 14	3.08 +- 4.04	6.35 +- 3.20
28	SV288-12071698	07/16/1998	1110	8 - 12	3.64 +- 2.54	11.0 +- 2.8
29	SV2910-12071598	07/15/1998	930	10 12	7.72 +- 3.34	28.5 +- 4.2
34	SV34-050699	05/06/1999	1030	6-12	4.41 +- 2.79	10.6 +- 2.8

Sample Location			Sample Time	Depth,	Gamma Spec Cesium - 137 (PCVG)	Alpha Spec Thorlum - 228 (PCI/G)	Thorlum -	Thorlum -	Uranium -	Uranium -	235/236		Thorlum -	Gamma Spec Potassium - 40 (PCI/G)
	SVSBW10-15070998	07/09/1998	1200	10 - 15	<0.023				<u> </u>			26.4 +- 12.8		4.01 +- 0.56
Septic Bed East	SVSBE10-15070998	07/09/1998	1000	10 - 15	0.033 +- 0:021				* * * * * * * * * * * * * * * * * * * *		0.096 +- 0.088		0.49 +- 0.36	
26	SV2610-14072098	07/20/1998	1500	10 - 14	<0.18		1				0.000	1.10	0.47 14 0.50	4,07 1-0.88
28	SV288-12071698	07/16/1998	1110	8 - 12	<0.21	0.14 +- 0.10	0.85 +- 0.28	0.26 +- 0.13	0.22 +- 0.15	0.22 +- 0.14	-0.005 +- 0.056			
29	SV2910-12071598	07/15/1998	930	10 - 12	<0.23				5.22 ***0.15	0.22 7-0.14	-0.005 1- 0.050	 -		6.24 +- 3.09
34	SV34-050699	05/06/1999	1030	6-12	<0.11									2.83 +- 1.34

Sample Location			Sample Time	A	Gamma Spec Lead - 212 (PCI/G)	Gamma Spec Lead - 214 (PCI/G)	Gamma Spec Lead - 210 (PCI/G)	Bismuth - 212	Gamma Spec Bismuth - 214 (PCI/G)	Thorlum -	Thorium - 231	Radium - 224	Gamma Spec Thallium - 208 (PCI/G)	Actinium -
		- 1,5 - 1 - 1 - 1	1200	10-15	0.41 +- 0.07	0.32 +- 0.09		0.44 +- 0.24	0.29 +- 0:07				0.12 +- 0.03	0.31 +- 0.13
Septic Bed East	SVSBE10-15070998	07/09/1998	1000	10-15	0.32 +- 0.51	0.39 +- 0:07	0.32 +- 0.31	0.35 +- 0.26	0.28 +- 0.08	0.85:+- 0.79	0.16 +- 0.14	0.74 +- 0.50		
26	SV2610-14072098	07/20/1998	1500	10-14	0.41 +- 0.24						0	0.777 0.50	0.040 1- 0.027	0.23 1- 0.13
28	SV288-12071698	07/16/1998	1110	8-12					··					
29	SV2910-12071598	07/15/1998	930	10-12	0.65 +- 0.20									
34	SV34-050699	05/06/1999	1030	6-12	0.15 +- 0.09	0.33 +- 0.14								

⁽¹⁾ Laboratory results of groundwater samples analyzed using DOE EML HASL 300.

TABLE 6-4

General Chemical Analysis of Soil

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Sample Location Sample Designation Date Time	(SV2610-14072098) 07/20/1998	28 (SV288-12071698) 07/16/1998 1110	29 (SV2910-12071598) 07/15/1998 930	34 (SV34050699) 05/06/1999 1030
Acid-insoluble sulfide	<61.4	90.9 J	<61.5	93.2
Carbonate Alkalinity	<123 J	<122 J	<123 J	NT
Total Organic Carbon	3290	1120	<61.5	<59.4
Sulfate	<304 J	<122 J	<308 J	353
Total Phosphorous	<12.3 J	<12.2 J	<12.3 J	NT
Phosphate as P, ortho	6.1 J	<1.2 J	<1.2 J	NT
Percent Solids	81.4	82.3	81.3	84.2
pH (no units)	6.1 J	7.0 J	7.6 J	NT

NT - Not Tested

⁽¹⁾ For a summary of USEPA Laboratory Analytical Qualifiers, see Appendix F.

TABLE 6-5
SUMMARY OF MINERALOGICAL TESTING RESULTS

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Analyte	Units	SV2910-12071598	SV2812-16071698	SV26072098
Carbonate Cadmium	mg/kg	<0.1	<0.1	<0.1
Carbonate Lead	mg/kg	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100 g dw	3,57	1.13	2.72
Extractable Cadmium	mg/kg	<0.1	<0.1	<0.1
Extractable Lead	mg/kg	<0.1	<0.1	<0.1
Hydroxide Cadmium	mg/kg	<0.1	<0.1	<0.1
Iron	mg/kg	120	26	34
Hydroxide Lead	mg/kg	0.36	<0.1	0.14
Manganese	mg/kg	33	<0.1	<0.1
Organic Cadmium	mg/kg	<0.1	<0.1	<0.1
Organic Lead	mg/kg	<0.1	<0.1	<0.1
Percent Solids	percent	83	82	80
рН	pH units	7.3	6.6	6.2
Residual Cadmium	mg/kg	<0.1	<0.1	<0.1
Residual Lead	mg/kg	2.2	0.96	1.6
Total Cadmium	mg/kg	<0.10	<0.10	<0.10
Total Lead	mg/kg	2.8	1.9	4.1

TABLE 7-1 SUMMARY OF GROUNDWATER SAMPLING LOCATIONS AND ANALYSES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Location	Date	Lead and Cadmium	Low Level VOA	Gross Alpha/Beta	Alpha Spectroscopy	Gamma Spectroscopy	General Chemistry ⁽¹⁾
EXISTING WELLS							
JS	07/08/1998	X	X				
JD	07/08/1998	X	X				
12	07/10/1998	X	X				
SD	07/09/1998	X	X				
BR	07/09/1998	X	X			,	
11	07/10/1998	X	X				
SS	07/10/1998	X	X				
OS	9/24/98 ⁽²⁾	X	X				
NS	07/13/1998	X	X			· · · · · · · · · · · · · · · · · · ·	
ND	07/13/1998	X	X				
OD	07/14/1998	X	X				
EXXON-2 (3)	01/26/1999	X	X	X		X	
NEW WELLS	10 T						
22 (4)	07/23/1998	X	X	X		X	·
23	07/23/1998	X	X	X		X	
24	07/22/1998	X	X	X		X	
26 ⁽⁴⁾	09/23/1998	X	X	X	X	X	X
27	07/21/1998	X	X	X	X	X	X
28	07/21/1998	X	X	X	X	X	
29	07/20/1998	X	X	X	X	X	X
30	07/20/1998	X	X	X	X	X	
31	07/15/1998	X	X	X		X	
32 (3)	07/15/1998	X	X	X	X	X	
33	05/19/1999	X	X	X		X	X
34	05/21/1999	X	X	X		X	
RESIDENTIAL WELL	S				The same of the same	1 2 1 1 1000 2 0000 2 2 10	
CCC	07/10/1998	X					
CRUZ	07/10/1998	X			· · · · · · · · · · · · · · · · · · ·		
WISTAR	07/13/1998	X					
KINNEY	07/14/1998	X					
GATES	07/14/1998	X					
MCCOURT	07/22/1998	X					
CASSANO	07/23/1998	X					
EYLER	7/24/98 (2)	X					***************************************
BUTCHER	01/26/1999	X					
<u>AQUIFER TEST WEL</u>	LS		3	45.1			
PW-1 ⁽⁵⁾		X	X				X ⁽⁶⁾

NOTES:

- (1) General chemistry parameters included a full general mineral analysis (calcium, iron, magnesium, manganese, potassium, sulfate, chloride, alkalinity -speciated, nitrate, nitrite, and pH), phosphate species, TSS, TDS, and sulfides.
- (2) Two samples obtained from location on two separate dates.
- (3) Matrix spike/Matrix spike duplicate obtained from location.
- (4) Blind duplicate sample collected from location.
- (5) Samples obtained during the aquifer-test at the following elapsed time intervals; .5 hrs, 1hr., 2 hr., 3 hr., 8 hr., then approximately every eight hours for the remainder of the test.
- (6) Aquifer test groundwater samples were analyzed for the following general chemistry parameters.

TAY 7-2 MONITORING WELL CONSTRUCTION DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

		Monitoring Wel	ls Screened in the U	nconfined Aquifer		
Monitoring Well	Casing Diameter (in.)	Well Depth ⁽²⁾	Screened Interval ⁽³⁾	Top of Casing Elevation (4)	Depth To Water ⁽⁵⁾	Pump Setting ⁽⁶⁾
BR	4	39.0	33.0-39.0	10.82	5.25	35.0
JS	2	17.0	17.0 - 27.0	13.89	7.68	10.0*
JD	2	27.7	17.7-27.7	14.02	7.78	22.0
NS	2	16.5	6.5 - 16.5	13.24	8.71	14.5
ND	2	24.0	14.0 - 24.0	12.29	7.91	20.0
OS	2	21.3	6.3 - 21.3	10.92	8.79	16.5
OD	2	37.3	12.3 - 37.3	13.38	8.53	25.0
SS	2	16.4	6.4 - 16.4	12.70	6.05	11.5
SD	2	29.4	17.4-29.4	13.39	7.07	23.0
11	4	54.1	34.1 - 54.1	11.19	5.27	42.5
22	2	16.0	11.0 - 16.0	13.01	10.01	15.0
23	2	24.0	24.0 - 34.0	12.85	9.78	30.0
26	2	22.0	12.0 - 22.0	10.77	5.83	17.0
27	2	15.0	5.0 - 15.0	15.45	11.48	13.0
28	2	30.0	20.0 - 30.0	15,28	11.37	25.0
29	2	15.0	5.0 - 15.0	15.14	11.12	12.0
30	2	30.0	20.0 - 30.0	15.17	NA	25.0
31	2	15.0	5.0 - 15.0	13.21	9.42	10.0
32	2	30.0	20.0 - 30.0	13.16	9.79	25.0
33	2	10.0	5.0 - 10.0	5.44	3.96	8,0
34	2	20.0	10.0 - 20.0	5.44	4.03	18.0
Exxon Well No. 2	NA	NA	NA	NA	6.73	20.0
	M	onitoring Wells	Screened in the Firs	t Confined Aquifer		
Monitoring Well	Diameter (in.)	Depth ⁽²⁾	Interval ⁽³⁾	Elevation ⁽⁴⁾	Depth To Water ⁽⁵⁾	Pump Setting ⁽⁶⁾
12	4	78.2	58.2 - 78.2	12.81	15.58	68.0
24	2	73.0	68.0 - 73.0	11.92	17.42	71.0

- (1) Height of protective steel casing in feet above ground surface.
- (2) Depth to bottom of well in feet below top of casing.
- (3) Screened interval of well in feet below ground surface.
- (4) Top of casing elevation in feet above mean sea level.
- (5) Depth to water in feet below top of casing.
- (6) Depth to pump intake in feet below ground surface.

CONCENTRATIONS OF LEAD AND CADMIUM IN GROUNDWATER

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Well	Lead Concent	ration (ug/L) ⁽¹⁾	Cadmium Conce	ntration (ug/L) ⁽¹⁾
	Total	Filtered	Total	Filtered
BR	<1.1 NJ	1.4 BNJ	16.0	15.0
JS	<1.1 NJ	<1.1 NJ	1.4 B	1.5 B
JD	<2.2 NJ	<2.2 NJ	200	207
NS	5.1 NJ	<1.1 N	0.70 B	<0.40
ND	<1.1 NJ	<2.2 NJ	0.42 B	1.5 B
OS ⁽²⁾	476 NJ	6.8 NJ	4.7 B	2.9 B
OS ⁽³⁾	281	365	1.8B	2.1B
OD	<5.5 NJ	<11.0 NJ	<2.0	3.0 B
SS	<1.1 NJ	<2.2 NJ	22.7	18.2
SD	25.6 NJ	24.0 NJ	184	169
1:1	1.4 BNJ	<1.1NJ	240	253
22	1.9 B	4.9	92.0	86.2
23	1.6 B	1.5 B	12.9	12.1
26	<11.0	49.2BJ	<11.0	41.6B
27	19.9	21.0	14.8	14.5
28	15.4	13.0	383	360
29	3.0 B	1.4 B	0.59 B	0.76 B
30	37.4	36.8	327	341
31	<1.1	<2.2	<0.40	<0.40
32	<1.1	<1.1	<0.40	<0.40
33	1.6 B	<0.92	<3.0	<3.0
34	8.6	<0.92	<3.0	<3.0
Exxon MW-2	<1,0	<1.0	<0.30	<0.30
12	<1.1 N	<2.2 N	<0.40	0.94 B
24	<1,1	<1.1	<0.40	<0.40

⁽¹⁾ Laboratory results of groundwater samples analyzed by USEPA SOW ILM04.0.

For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

⁽²⁾ Sample obtained 7/31/1998.

⁽³⁾ Resample obtained 9/24/1999.

SUMMARY OF FIELD MEASUREMENTS

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

		Monitoring Wells	Screened in the U	Inconfined Aquife		
Monitoring Well	Date Sampled	рН	Conductivity (mS/cm)	Redox (+/- mv)	Dissolved Oxygen (ppm)	Turbidity (NTU)
BR	07/09/1998	6.8	1.83	+108	0.93	0.5
JS	07/08/1998	5.3	0.09	+276	2.93	23.0
JD	07/08/1998	3.6	0.37	+398	2.63	2.6
NS	07/13/1998	5.9	0.21	+178	1.14	4.0
ND	07/13/1998	5.2	0.39	+125	0.30	18.8
OS	07/13/1998	4.5	4.66	-14	0.38	11.8
OD	07/14/1998	3.9	5.38	-72	0.60	4.7
SS	07/10/1998	5.5	1.01	+34	NR	5.9
SD	07/09/1998	3.0	8.74	+309	NR	12.7
11	07/10/1998	5.7	1.40	+177	1.57	7.7
22	07/23/1998	4.4	0.37	+373	NR	0.4
23	07/23/1998	3.1	2.25	+426	NR	2.3
26	09/23/1998	4.1	1.30	+182	13.7	NR
27	07/21/1998	5.1	1.05	+110	0.23	5.0
28	07/21/1998	3.6	4.38	+238	0.25	4.1
29	07/20/1998	6.4	1.87	-36	0.35	3.3
30	07/20/1998	4.9	2.10	+100	0.25	38
31	07/15/1998	6.3	0.50	-114	NR	45
32	07/15/1998	5.9	0.24	-210	0.28	12.6
33	05/19/1999	5.4	1.42	-325	1.65	32
34	05/21/1999	5.8	2.71	NR	NR	1100
Exxon MW-2	01/26/1999	6.4	0.38	-86	10.95	<10
	M	Ionitoring Wells S	creened in the Fir	st Confined Aqui	ler	
Monitoring Well	Date		Conductivity	Redox	Dissolved	Turbidity
	Sampled	pH	(mS/cm)	(+/- mv)	Oxygen (ppm)	(NTU)
12 24	07/08/1998 07/22/1998	5.9	0.54	-9	0.74	74.5
24	07/22/1998	5.7	0.07	+15	NR	22.2

Notes:

mS/cm = microSeimens per centimeter

mv = millivolts ppm = parts per million

NTU = nephelometric turbidity units
NR = Not recorded due to meter malfunction

TABLE 7-5
LEAD CONCENTRATIONS AND TURBIDITY VALUES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring W	ells Screened in	the Unconfined A	quifer
Monitoring	Date	Turbidity	Lead Conce	ntration (ug/L) ⁽¹⁾
Well	Sampled	(NTU)	Total	Filtered
BR	07/09/1998	0.5	<1.1 NJ	1.4 BNJ
JS	07/08/1998	23.0	<1.1 NJ	<1.1 NJ
JD	07/08/1998	2.6	<2.2 NJ	<2.2 NJ
NS	07/13/1998	4.0	5.1 NJ	<1.1 N
ND	07/13/1998	18.8	<1.1 NJ	<2.2 NJ
OS	07/13/1998	11.8	476 NJ	6.8 NJ
OD	07/14/1998	4.7	<5.5 NJ	<11.0 NJ
SS	07/10/1998	5.9	<1.1 NJ	<2.2 NJ
SD	07/09/1998	12.7	25.6 NJ	24.0 NJ
11	07/10/1998	7.7	1.4 BNJ	<1.1NJ
22	07/23/1998	0.4	1.9 B	4.9
23	07/23/1998	2.3	1.6 B	1.5 B
26	09/23/1998	NR	<11.0	49.2BJ
27	07/21/1998	5.0	19.9	21.0
28	07/21/1998	4.1	15.4	13.0
29	07/20/1998	3.3	3.0 B	1.4 B
30	07/20/1998	38	37.4	36.8
31	07/15/1998	45	<1.1	<2.2
32	07/15/1998	12.6	<1.1	<1.1
33	05/19/1999	32	1.6 B	< 0.92
34	05/21/1999	1100	8.6	<0.92
Exxon MW-2	01/26/1999	<10	<1.0	<1.0
	Monitoring Well	s Screened in th	he First Confined A	Aquifer
Monitoring	Date	Turbidity	Lead Concer	itration (ug/L) ⁽¹⁾
Well	Sampled	(NTU)	Total	Filtered
12	07/08/1998	74.5	<1.1 N	<2.2 N
24	07/22/1998	22.2	<1.1	<1.1

NTU = nephelometric turbidity units

⁽¹⁾ Laboratory results of groundwater samples analyzed by USEPA SOW ILM04.0. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

ANALYTICAL METHODS FOR ANALYSIS OF GROUNDWATER SAMPLES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Parameter	Method
Volatile Organic Compounds	Organic SOW OLC02.1
Total and Dissolved Lead and Cadmium	Inorganic SOW ILM04
Radiological Parameters	DOE EML HASL 300
General Chemistry	MCAWW ⁽¹⁾
pН	150.1
Bicarbonate Alkalinity	310.1
Carbonate Alkalinity	310.1
Chloride	325.2
Nitrate-Nitrite	353.2
Sulfate	375,4
Total Phosphorous	365.2
Total Dissolved Solids	160.1
Total Sulfide	376.1
Total Suspended Solids	160.2

⁽¹⁾ Methods for Chemical Analysis of Water and Waste

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER

Phase II Groundwater Evaluation

NL Industries Superfund Site Pedricktown, New Jersey

Sample Location	BR	JS	JD	NS	ND	OS
Sample Designation	(GWBR070998)	(GWJS070898)	(GWJD070898)	(GWNS071398	(GWND071398)	(GWOS071398)
Date	07/09/1998	07/08/1998	07/08/1998	07/13/1998	07/13/1998	07/13/1998
Time	1616	1225	1050	1035	1220	1555
COMPOUND (ug/L)"						
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	<1.0	0.13 J	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene chloride	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Acetone	< 69	< 43	< 43	< 29	< 6.7	<5.0
Carbon disulfide	<1.0	<1.0	<1.0	<1.0	<1.0	0.25 J
1,1-Dichloroethene	11	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	9.2	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1.2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	0.24 J	<1.0	0.74 J	<1.0	<1.0	<1.0
1,2-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Butanone	Ř	Ř	R	R	Ř	R
Bromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	36 E	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromdichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	0.22 J	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	1.1	<1.0	<1.0	<1.0	0.14 J	0.15 J
trans-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Hexanone	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	3.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes (total)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	0.24 J	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	R	R	R	R	R	R
1.2,4-Trichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

⁽¹⁾ Laboratory results of groundwater samples analyzed using USEPA Method OLC02.1/SOW/10/92 and 0LM01.9. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

TABLE 7-7 (continued) CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER

Phase II Groundwater Evaluation NL Industries, Inc. Superfund Site Pedricktown, New Jersey

			vii, ivew derse	<u> </u>		
Sample Location Sample Designation Date	OD (GWOD071498) 07/14/1998	SS (GWSS071098) 07/10/1998	SD (GWSD070998) 07/09/1998	11 (GW11071098) 07/10/1998	22 (GW22072398) 07/23/1998	23 (GW23072398) 07/23/1998
Time	1012	1145	1105	1115	1040	935
COMPOUND (ug/L)(1)		****	1105	11,13	1070	733
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene chloride	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Äcetone	< 5.0	< 38	< 83	< 59	<5.0J	R
Carbon disulfide	0.44 J	<1.0	2.5	<1.0	<1.0	<1.0
1,1-Dichloroethene	<1.0	<1.0	<1.0	0.12 J	<1.0	<1.0
1,1-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1.2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	0.22 J	<1.0	2.8	0.65 J	0.46 J	<1.0
1,2-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Butanone	R	R	1.2 J	Ř	Ř	R
Bromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1.1-Trichloroethane	<1.0	<1.0	<1.0	0.70 J	<1.0	<1.0
Carbon tetrachloride Bromdichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
cis-1.3-dichloropropene	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
Trichloroethene	<1.0	<1.0	0.10 J	0.17 J	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	0.10 J
1,1.2-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	0.45 J	<1.0	0.19 J	0.13 J	<1,0	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Hexanone	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	<1.0	<1.0	<1.0	0.28 J	<1.0	<1.0
1,1.2.2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	<1.0	<1.0	0.46 J	<1.0	<1.0	<1.0
Styrene Xylenes (total)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0	1.6	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	<1.0 R	<1.0	<1.0	<1.0	<1.0	<1.0
1,2.4-Trichlorobenzene	<1.0	R <1.0	R <10	R	R	R
, a, T - I HOMOTOUGHECHE	<u> </u>	<1.0	<1.0	<1.0	<1.0	<1.0

⁽¹⁾ Laboratory results of groundwater samples analyzed using USEPA Method OLC02.1/SOW/10/92 and 0LM01.9. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

TABLE 7-7 (continued) CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Sample Location Sample Designation	26 (GW26092398)	(GW27072198)	GW28072198)	(GW29072098)	(GW30072098)	31 (GW31071598
Date	09/23/1998	07/21/1998	07/21/1998	07/20/1998	07/20/1998	07/15/1998
Time	1530	1050	1315	1020	1445	1552
COMPOUND (ug/L)		1000	.5.15	1020	1113	1332
Chloromethane	<1.0UJ	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	<1.0	<1.0	<1.0	<1.0	· <1.0	<1.0
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene chloride	<1.0UJ	<2.0	<2.0	<2.0	<2.0	<2.0
Acetone	Ř	<5.0J	<5.0J	<5.0 J	<5.0J	<5.0J
Carbon disulfide	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichioroethene Chloroform	<1.0 <1.0	<1.0 <1.0	<1.0 0.66 J	<1.0 <1.0	<1.0 0.64 J	<1.0 <1.0
1.2-Dichloroethane	<1.0	<1.0	<1.0	<1.0 <1.0	0.64 J <1.0	<1.0 <1.0
2-Butanone	R	-1.0 R	-\(\frac{1.0}{R}\)	<5.0 J	R R	<5.0J
Bromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Triehloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromdichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0^	<1.0
Benzene	0.18 J	<1.0	<1.0	0.38 J	<1.0	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	0.29 J	<1.0	<1.0	<1.0
4-Methyl-2-pentanone 2-Hexanone	R R	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	<1.0	<5.0 <1.0	<5.0 <1.0	<5.0 <1.0	<5.0	<5.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0
.2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
thylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
(ylenes (total)	<1.0	<1.0	0.28 J	<1.0	sga 0.11 J	<1.0
,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
,4-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	0.18 J
,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
,2-Dibromo-3-chloropropane	<1.0	R	R	R	R	R
.2,4-Trichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

⁽¹⁾ Laboratory results of groundwater samples analyzed using USEPA Method OLC02.1/SOW/10/92 and 0LM01.9. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

TABLE 7-7 (continued)

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER

Phase II Groundwater Evaluation NL Industries, Inc. Superfund Site Pedricktown, New Jersey

						<u> </u>
Sample Location	32	33	34	12	24	Exxon MW-2
Sample Designation	(GW32071598)	(GW33051999)	(GW34052199)	(GW12070898)	(GW24072298)	(GWEXXON012699
Date	07/15/1998	05/19/1999	05/21/1999	07/08/1998	07/22/1998	01/26/1999
Time	1045	1350	1330	1614	1445	1200
COMPOUND (ug/L)(1)						
Chloromethane	0.12 J	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	<1.0J	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	<1.0	<1.0	<1.0	13	4.1	<1.0
Chloroethane	<1.0	<1.0UJ	<1.0	<1.0	<1.0	<1.0
Methylene chloride	<2.0	<2.0	<2.0N	<2.0	<2.0	<2.0
Acetone	<5.0 J	R	<5.0UJ	<38	<5.0J	3.3J
Carbon disulfide	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	<1.0	<1.0	<1.0	0.43 J	0.13 J	<1.0
cis-1.2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	0.18 J
trans-1,2-dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	<1.0	<1.0	<1.0UJ	0.15 J	<1.0	<1.0
2-Butanone	R	R	R	R	R	<5.0
Bromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromdichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	0.11 J	<1.0
1,1,2-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	<1.0	<1.0	<1.0	0.28 J	0.64 J	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0	<1.0	0.38 J	<1.0
4-Methyl-2-pentanone	<5.0	<5.0	<5.0UJ	<5.0	<5.0	<5.0
2-Hexanone	<5.0	<5.0	<5.0R	<5.0	<5.0	<5.0
Tetrachloroethene	<1.0	<1.0	<1.0UJ	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	0.26 J
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes (total)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
,4-Dichlorobenzene	0.32 J	<1.0	<1.0	<1.0	<1.0	<1.0
,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
,2-Dibromo-3-chloropropane	R	Ř	R	R	R	<1.0
,2,4-Trichlorobenzene	<1.0	<1.0UJ	<1.0UJ	<1.0	<1.0	<1.0

⁽¹⁾ Laboratory results of groundwater samples analyzed using USEPA Method OLC02.1/SOW/10/92 and 0LM01.9. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

TABLE 7-8

CONCENTRATIONS OF GROSS RADIOLOGICAL PARAMETERS IN GROUNDWATER

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Monitoring Well	Sample Designation	Sample Date	Sample Time	Gross Alpha (pCi/L) ⁽¹⁾	Gross Beta (pCi/L) ⁽¹⁾
22	GW22072398	07/23/1998	1040	6.63 +/- 1.32	5.06 +/- 1.04
23	GW23072398	07/23/1998	935	4.70 +/- 1.25	9.66 +/- 1.69
24	GW24072298	07/22/1998	1445	1.85 +/- 0.80	3.64 +/- 1.27
26	GW26092398	09/23/1998	1530	0.43 +/- 1.17	1.70 +/- 1.29
27	GW27072198	07/21/1998	1050	0.51 +/- 0.77	16.0 +/- 2.0
28	GW28072198	07/21/1998	1315	51.4 +/- 7.0	106 +/- 11
29	GW29072098	07/20/1998	1020	1.46 +/- 1.03	6.06 +/- 1.48
30	GW30072098	07/20/1998	1445	9.47 +/- 2.75	12.8 +/- 3.0
31	GW31071598	07/15/1998	1552	280 +/- 29	109 +/- 11
32	GW32071598	07/15/1998	1045	2.67 +/- 0.92	8.68 +/- 1.58
33	GW33051999	05/19/1999	1350	1.28 +/- 3.16	12.1 +/- 3.3
34	GW24052199	05/21/1999	1330	1.81 +/- 2.36	1.14 +/- 5.50
Exxon MW-2	GWEXXON012699	01/26/1999	1200	1.15 +/- 1.04	7,25 +/- 1.68

⁽¹⁾ Laboratory results of groundwater samples analyzed for gross alpha and gross beta using DOE EML HASL300.

CONCENTRATIONS OF RADIOLOGICAL PARAMETERS IN GROUNDWATER

Phase II Groundwater Evaluation NL Industries, Inc. Superfund Site Pedricktown, New Jersey

Monitoring Well	Sample Designation	Sample Date	Sample Time	Gamma Spec Cesium - 137 (PCI/L)	Alpha Spec Thorium - 228 (PCI/L)	Alpha Spec Thorium - 230 (PCI/L)	Alpha Spec Thorium - 232 (PCI/L)	Alpha Spec Uranium - 234 (PCI/L)	Alpha Spec Uranium - 238 (PCI/L)	Alpha Spec Uranium - 235/236 (PCI/L)
22	GW22072398	07/23/1998	1040	<13.1						
23	GW22072398	07/23/1998	935	<16.4				·		
24	GW22072298	07/22/1998	1445	<14.7				:		
26	GW26092398	09/23/1998	1530	<16.1	0.93 +- 0.46	3.73 +- 1.15	0.11 +- 0.17	5.63 +- 1.79	5.90 +- 1.79	0:30 +- 0.34
27	GW27072198	07/21/1998	1050	<13.8	-0.20 +- 0.38	-0.13 +- 0.27	-0.29 +- 0.24	0.069 +- 0.103	0.010 +- 0.052	0.030 +- 0.091
28	GW28072198	07/21/1998	1315	<15.8	0.36 +- 0.20	0.45 +- 0.23	0.18 +-: 0.16	2.17 +- 0.72	2.06 +- 0.70	0.35 +- 0.27
29	GW29072098	07/20/1998	1020	<16.3	0.24 +- 0.20	0.30 +- 0.21	0.096 +- 0.113	0.54 +- 0.31	0.17 +- 0.20	0.37 +- 0.12
30	GW30072098	07/20/1998	1445	<15.4	0.30 +- 0.26	0.54 +- 0.33	0.026 +- 0.172	3.52 +- 1.00	3.53 +- 1.01	0.22 +- 0.21
31	GW31071598	07/15/1998	1552	<18.2						
32	GW32071598	07/15/1998	1045	<15.9	0.12 +- 0.14	0.10 +- 0.17	0.027 +- 0.080	0.22 +- 0.20	0.023 +-0.080	0.23 +- 0.24
33	GW33051999	05/19/1999	1350	<12.8						
34	GW34052199	05/21/1999	1330	<13.3				,		
Exxon MW-2	GWEXXON012699	01/26/1999	1200	<18.8						

⁽¹⁾ Laboratory results of groundwater samples analyzed using DOE EML HASL 300. For a summary of USEPA laboratory analytical qualifiers, see Appendix F.

GENERAL CHEMICAL ANALYSIS OF GROUNDWATER

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Sample Location	26	27	29	32	33	34
Sample Designation	(GW26092398)	(GW27072198)	(GW29072098)	(GW32071598)	(GW33051999)	(GW34052199)
Date	09/23/1998	07/21/1998	07/20/1998	07/15/1998	05/19/1999	05/21/1999
Time	1530	1050	1020	1045		,,,,,,
ANALYTE (ug/L)						
Calcium	75900	160000	38300	20700	22700	22800
Iron	127000	3410	1750	1760	7260	99200
Magnesium	45300	6080	10100	8810	9320	11600
Manganese	3910	249	7820	290	2990	2730
Potassium	10900	24300	9990	8930	11000	8650
Sodium	189000	158000	454000	16900	311000	507000
Sample Location	26	27	29	32	33	34
Sample Designation	· ·	(GW27072198)		(GW32071598)	(GW33051999)	(GW34052199)
Date	09/23/1998	07/21/1998	07/20/1998	07/15/1998	05/19/1999	05/21/1999
Time	1530	1050	1020	1045	1350	1330
ANALYTE (mg/L)				!	1000	1330
Bicarbonate Alkalinity	<5.0	11.8	298	NT	32.6	34.0
Carbonate Alkalinity	<5.0	<5.0	<5.0	NT	<5.0	<5.0
Chloride	27.4	14.0	63.6	NT	40.9	65.7
Nitrate-Nitrite	0.20	3.5	<0.20	NT .	0.20	<0.20
Sulfate	2390	722	738	NT	721	1310
Total Phosphorus	0.037	<0.10	<0.10	NT	<0.10	0.77
Total Dissolved Solids	8390	1220	1520	NT	1080	1920
Total Sulfide	2.4	<0.50	<0.50	NT	<0.50	<0.50
Total Suspended Solids	otal Suspended Solids <4.0		6.4	NT	<4.0	700
pH (no units)	4.2	5.8	6.6	NT	5.7	7.0

NT = Not Tested

HISTORICAL GROUNDWATER DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

ere. Andrew Her	Monitoring Well		· IR		2R2								
Compound	Date Units	1983	1989 (filtered)	1997	1983	1988 (filtered)	1989	1989	1990	1997			
Antimony	mg/l	NA	NA	<22.3	NÁ	<30	NA	NA	NA	23.1 B			
Arsenic	mg/l	NA	NA	<3.2	NA	N/A	18200J	4900	4570	2,820			
Beryllium	mg/l	NA	NA	<0.20 E	NΛ	NA	NA	NA	NA	0.73 B E			
Cadmium	mg/l	NA	3.1	2.5 J B E	NA	2 J	<10	10	5	<4.6 J E			
Chromium	mg/l	NA	NA	<3.2 J	NA	8 J	NA	NA	6	28.9			
Copper	mg/l:	ÑΑ	NA	2.9 B	ÑĀ	<20	NΛ	NΛ	NA.	11.2 B			
Lead ·	mg/l	280	<5 J	8.1	60	4	<1 J	<50	<5	<1.9 J			
Mercury	mg/l	NΛ	NA	<0.20	NA	NΛ	· NA	ÑΑ	NΛ	< 0.20			
Nickel	mg/l	NA	NA	10.8 B E	NA	NA	NA	NA.	NA	15.2 B E			
Selenium	mg/l	NA	NA	3.7 J B	NA	N/A	N/A	N/A	N/A	<3.1 J			
Silver	mg/l	NA	NA	<3.3	NA	N/A	N/A	N/A	N/A	<3.3			
Thallium	mg/l	NA	NA	<3.8 J N	NA	N/A	N/A	N/A	N/A	8.6 J B N			
Zinc	mg/l	NA	NA	51.0	NA	N/A	N/A	N/A	N/A	21.5			
Cyanide	mg/l	NA	NÁ	<5.0 J *	NA	N/A	N/A	N/A	N/A	13.2 J *			
Sulfate	mg/l	8850	2,300	27	6500	3,340	5,800	6,100	2,300	4400			
Turbidity	NTU	51	30	6.6	34	>90	>90	NA	NA	34			
pН		4.61	4.1	5.1	6.96	6.6	8.7	NA	7.1	7.2			
SC	mmho/cm	>8000	4400	100	>8000	5500	13000	9700	4200	1500			
Gross Alpha	pCi/L	NA	NA	4.26/.66	NA .	<20	<70	NA NA	<10	60.8/14.1			
Gross Beta	pCi/L	NA	NA	2.62/.64	NA	<90	<100	NA NA	23/11	-15.7/ 9.8			
Total VOCs	mg/l	NA	NA	ND	NA	NA.	NA :	NA NA	N/A	7.44			

Notes:

For a summary of USEPA qualifers, see Appendix F. NA = Not Analyzed N/A = Data Not Available ND = Not Detected

TABLE 7-11 (continued)

HISTORICAL GROUNDWATER DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring Well	1985 B. 199		11 m/s	的记录等文字	AN YES	2021 - FARE	15		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Date	1983	1988	1989	1990	1997	1989	1990	1997	1989	1990*	1997		
Compound	Units		(filtered)	(filtered)			(filtered)	(filtered)		(filtered)	(filtered)			
Antimony	mg/l	NΛ	<3	NA:	NA	28.7 J B	NΛ	NA	<14.0	NA	NA	<22.3		
Arsenic	mg/l	NΛ	N/A	<3	NΛ	<3.2	<1 J	2	<2.3	6	. 2	15.0		
Beryllium	mg/l	NA	3	NA	NA	0.37 B E	NA	NA	0.15 B	NA .	N/A	<0.20 E		
Cadmium	mg/l	NA	134	210	NA	47.0 J E	<1	<3	<2.6 J	<1	<3	<2.3 J E		
Chromium	mg/l	ŇΛ	5 J	NA	NΛ	4.7 B	N/A	5	<2.3	N/A	<5	9.2 B		
Copper	mg/l	NA	42	ŅĀ	NA	16.5 B	NA	NA	1.8 J B	NA	NΑ	12.2 B		
Lead	mg/l	460	6·J	N/A	NA	25.2 J	N/A	2.1	4.5	N/A	2.6	5.5 J		
Mercury	mg/l	NΛ	<0.2	NΛ	NA	<0.20	NA	NΛ	<0.20	NA :	NΛ	<0.20		
Nickel	mg/l	NΛ	63	140 J	NA	17.1 B E	NA	NA	<8.4	NA	NA	<6.9 E		
Selenium	mg/l	NA	N/A	NA	NA	4,8 J B	NA	NA	<3.0 J	NA	NA	<3.1 J		
Silver	mg/l	NA	NA	NA	NA	<3.3	NA	NA	<2.4	NA .	NA	<3.3		
Thallium	mg/l	NA	1	NA	NA	4.0 J B N	NA	NA	3.6 B	NA :	NA.	6.2 J B N		
Zinc	mg/l	NA	297	NA	NA	59.2	NA	NΛ	13.9 B	NA	NA	62.1		
Cyanide	mg/l	NΛ	NA	NA	NA	<5.0 J *	NΛ	NA	<5.01	NA	NA.	<5.0 J *		
Sulfate	mg/l	14700	2,760	1,800	NA	4600	22	15	17	13	10	10		
Turbidity	NTU	1:5	53 ⁻	NA	NA	16	NA	8.7	3	NA	10	46		
pН		4.79	5.2	5.7	NA	6.1	5.2	4.7	5.2	7	5.1	5.4		
SC	mmho/cm	>8000	4500	4100	NA	1800	110	100	10	40	100	100		
Gross Alpha	pCi/L	NΛ	<10	<40	NA	10/7.8	<1	NΛ	.36/.21	1/.4	NA	4.17/.6		
Gross Beta	pCi/L	ŇA	<50	NA	NA	27.3/7.6	4.5/1.3	NΛ	1.85/.83	2.1/.4	NA	5.4/.79		
Total VOCs	mg/l	NA	NA	5124	2974	1.52	NA	NA '	ND	NA	NΛ	1.9		

Notes:

For a summary of USEPA qualifers, see Appendix F. NA = Not Analyzed N/A = Data Not Available ND = Not Detected

TABLE 7-11 (continued)

HISTORICAL GROUNDWATER DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

TOWN DEPOSIT NAME	onitoring Well	artans right	40.000 M	BR 🤲		PANANY CA	Rasert cost	N & CR2 mg		TO BE SEEN SERVED ON HS FOR THE WAY THE PROPERTY.				
	Date .	1983	1988	1988	1990	1997	// 1983	1988	1997	1983	1988	1989	1997	
Compound	Units			(filtered)				(filtered)			(filtered)	(filtered)		
Antimony	mg/l	NA	<3	NA	NA	<22.3	NA	<3	<14.0	NA	122	92 J	<14:0	
Arsenic	mg/l	NA	<1	NA	NA	<3.2 J	NA	<1	<2.3	NA	2	NA	<2.3	
Beryllium	mg/l	NA	NA	NA	NA	<0.20 E	NA	NA	<0.12	NA	NA	NA	2.3 B	
Cadmium	mg/l	NA	15	<1 J	NA	13.5 E	NA	<1	<2.6 J	NA	10 J	6.3 J	14.6 J	
Chromium	mg/l	NA	2 J	NA	NA	<3.2	NA -	10	3.1 B	NA	3 J	NA	7.6 B	
Copper	mg/l	NA	39	NA	ΝA	5.8 B	NA	<20	<1.5	NA	24	NA NA	42.9	
Lead	mg/l	250	18	5 J	ΝA	1.9 B	70	28 J	1.8 B	3860	6,290 J	4,400	90.2	
Mercury	mg/l	NA	NA	NA	NA	<0.20	NA	NA	<0.20	NA	NA	NA NA	<0.20	
Nickel	mg/l	NA	NA	NA	NA	9.0 B E	NA	NA.	<8.4	NA	ΝA	NA	19.8 J B	
Selenium	mg/l	NA	<20	NA	NA	<3.1	NA :	<2	<3.0 J	NA	<2	NA	<3.0 J	
Silver	mg/l	NA	NA	NA	NA:	<3.3	NA	NA	<2.4	NA	NA	NA NA	<2.4	
Thallium	mg/l	NA	NA.	NA	NA	6.8 J B N	NA	NA	3.3 B	NA	NA	NA NA	2.8 B	
Zinc	mg/l	NA	NA	NA	NA	25.7	NA	NA	15.7 J B	NA	NA	NA	109 J	
Cyanide	mg/l	NA	NA	NA	NA	<5.0 J *	NA	NA.	<5.0 J	NA	NA	NA	<5.0 J	
Sulfate	mg/l	11400	1,100	89 J	ŇA	3700	23	4	<5	186	84	69 J	110	
Turbidity	NTU	.3	1.5	NA	NA	4	125	>90	24	24	>90	>90	0.4	
pH		5.42	5.7	4.1	NA	6.2	5.97	5.7	5.9	3.36	3.8	4.4	3.6	
SC	mmho/cm	>8000	2000	310	NA	1700	140	110	30	8000	300	220	300	
Gross Alpha	pCi/L	NA	<8	3.6/1.2	NA	8.32/6.92	NA	<1	.53/.29	NA.	<3	NA NA	5,25/.78	
Gross Beta	pCi/L	NA	<20	NA	NA	34.1/8.1	NA NA	<2	1/.49	NA NA	9.3/6			
Total VOCs	mg/l	NA	NA	NA	89.3	79	NA NA	NA NA	ND	NA NA	9.3/6 NA	NA NA	11.6/1.3 ND	

Notes:

For a summary of USEPA qualifers, see Appendix F. NA = Not Analyzed N/A = Data Not Available ND = Not Detected

TABLE 7-11 (continued)

HISTORICAL GROUNDWATER DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Months Mo	onitoring Well	48 1 July 18 42	JD		E. C. Marie Co., C.	KS	YAR BUREY.	OBSTRUCTION		KD	53 Y S & S & S & S & S & S & S & S & S & S	4.30	LS
	Date	> 1983	1988	1997	1983	1988	1997	1983	1988	1989	1990	1997	1997
Compound And M. Ag.	Units		(filtered)			(filtered)			(filtered)	(filtered)			A Maria
Antimony	mg/l	NA	<30	<14.0	NA	<30	85.4	NΛ	<30 J	NA	NA	<14.0	<22.3
Arsenic	mg/l	NA	1	<4.6	NA	N/A	4.6 B	NΛ	N/A	NA	21	<2.3	24.5
Beryllium	mg/i	NA	7	7.9	NA	NA	0.29 B	NA	NA	NA	NA	0.81 J B	<0.20 E
Cadmium	mg/l	NA	103	193 J	NA	173	63.0 J	NA	291	113	103	16.5 J	<2.3 J E
Chromium	mg/l	NA	27	45.2	ŇA	60	<2.3	NA	246	81 J	82	<2.3	<3.2
Copper	mg/l	NA.	143	300	NA	219	5.6 B	NA	513	152 J	NA	22.1 J B	2.8 B
Lead	mg/l	390	14	4.1 B	2560	3130	328	270	61J	19 J	14	<1.0	31.7
Mercury	mg/l	NA	<0.2	<0.20	NA	NA	<0.20	NA	NA	NA	NA	<0.20	<0.20
Nickel	mg/l	NA	99	146	NA	NA	123	NA	NA	NA	NA	537	<6.9 E
Selenium	mg/i	ŇA	<20	<6.0 J	NA	N/A	<3.0	NA	N/A	NA	NA	<3.0	4.7 J B
Silver	mg/l	NA	<10	<2.4	NA	NA	<2.4	NA	NA	NA:	NA	<2.4	<3.3
Thallium	mg/l	NA	<1	8.7 B	NA	NA	5.4 J B	NA	NA	NA	NA	9.7 J B	<3.8 J N
Zinc	mg/l	NA	603	1,070	NA	NA .	2,350	NA	NA	NA	NA	10,600	25.5 J
Cyanide	mg/l	NA	<10	<5.0 J	NA	NA .	<5.0 J	NA	:NA	NA	NA	<5.0 J	<5.0 J *
Sulfate	mg/l	3520	741	1500	6000	3,070	680	11,000	8,460	2,700	5,700	2400	61
Turbidity	NTU	46	44	3	17	>90	5	300	>90	NA	3.7	0.4	7
pН		3.3	4	3.6	2.59	2.9	5.1	2.55	2.5	3.4	3.2	3.7	5.5
SC	mmho/cm	6000	510	1200	>8000	5000	1000	>8000	12000	500	1000	2100	200
Gross Alpha	pCi/L	NA	<8	15.7/2.8	NA	<10	1.64/1.13	NA	43/26	NA	57/21	10.7/9.9	13.2/1.7
Gross Beta	pCi/L	NA NA	<20	11,5/2.1	NA	<60	5.68/1.22	NA	<100	NA	<20	5.32/5.01	5.48/.79
Total VOCs	mg/l	NA	NA	0.27	NA.	NA	ND	NA	NA	NA	N/A	0.34	0.43

Notes:

For a summary of USEPA qualifers, see Appendix F. NA = Not Analyzed N/A = Data Not Available ND = Not Detected

TABLE 7-11 (continued)

HISTORICAL GROUNDWATER DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring Well	7.33.38.38.38	e voje si kaj kaj L	Degree Company	\$\$\f\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ं रहे । इं . श	IS	0.00 18 18 18 18 18 18 18 18 18 18 18 18 18
含物型的多数物质的 的	Date	1983	1988	1989	1997	1983	1988	1989	1997
Compound	Units		(filtered)				(filtered)	(filtered)	
Antimony	mg/l	NA	<30	NA .	92.4	NA	<3 J	NA	30.3 B
Arsenic	mg/l	NA	2	NA	9,9 B	NÁ	<1	NA	<3.2
Beryllium	mg/l	NA .	NA	NA	1.5 B E	NA	NA	NA	<0.20 E
Cadmium	mg/l	NA	2 J	2	3.1 J B E	NA	- 11	16 J	<2.3 J E
Chromium	mg/l	NA	11	NA	3.4 B	NA	4J	NA	8.5 B
Соррег	mg/l	NA	<20	NÁ	8.3 B	NA	<20	NA	12.7 B
Lead	mg/l	290	44	24	16.2	740	198 J	219 J	102
Mercury	mg/l	NA	NA.	NA	<0.20	NA	NA	NA	<0.20
Nickel	mg/l	NA ,	NA	NA	21.0 J B E	NA	NA	NA	20.6 B E
Selenium	mg/l	NA	<20	NA	<3.1	NÁ	<20	NA	<3.1
Silver	mg/l	NA	NA	NA	<3.3	NA	NA	NA	<3.3
Thallium	mg/l	NA	NA	NA	4.4 J B N	NÁ	NÁ	NA	<3.8 J N
Zinc	mg/l	NA	NA	NÁ	236	NA	NA	NA	54.8
Cyanide	mg/l	NA	NA	NA	<5.0 J *	NA	NA	NA	<5.0 *
Sulfate	mg/l	289	170	41	260	1080	321	N/A	41
Turbidity	NTU	45	>5	2.7	19	58	46	22	34
рН		4.42	4	3.5	4.5	4.51	4	4.1	5.8
SC	mmho/cm	700	340	120	300	2300	700	700	300
Gross Alpha	pCi/L	NA	<4	NA	4.09/.79	NA NA	<4	NA.	.82/.665
Gross Beta	pCi/L	NA	7.6/3.7	NA	6.36/.88	NA	<9	NA NA	2.68/.58
Total VOCs	mg/l	NA	NA	NA NA	0.10	NA NA	NA	NA NA	0.13

Notes:

For a summary of USEPA qualifers, see Appendix F. NA = Not Analyzed N/A = Data Not Available ND = Not Detected

TABLE 7-11 (continued)

HISTORICAL GROUNDWATER DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

M	onitoring Well		l N	S				SD	· · · · · · · · · · · · · · · · · · ·		10)R
	Date	1983	1988	1989	1997	1983	1988	1989	1990	1997	1990	1997
Compound	Units	મુખ માં મહીં મોટી જોઈ છો. -	(filtered)	(filtered)			(filtered)	(filtered)	(filtered)		(filtered)	
Antimony	mg/l	NA	<30	NA	<22.3 J	NA	<30	NA	NA	31.9 B	NA	<14.0
Arsenic	mg/l	NA	< <u> </u>	NA	<3.2	NA :	N/A	N/A	29	<25.6	3	<23.2
Beryllium	mg/l	NA	NA	NA :	0.46 B E	NΛ	NA	NA	NΛ	32.6 J E	NΛ	14.4
Cadmium	mg/l	NA	9	4	<2.3 J E	NA :	1,010	963	997	237 J E	<3	33.9 J
Chromium	mg/l	NΛ	13	NΛ	<3.2	NΛ	3,250	4.340 J	3,660	591	5	<2.3
Copper	mg/l	NΛ	<20	NΛ	3.8 B	NΛ	3,840	4,680 J	NA	791	NΛ	42.8
Lead	mg/i	1180	45 J	10 J	8.2	2960	294	84 J	56	51.1 J	90	26.1 B
Mercury	mg/l	NΛ	NA	NΛ	<0.20	NΛ	0.3	NΛ	NΛ	<0.20	NΛ	<0.20
Nickel	mg/l	NA	NA.	NA ·	<6.9 E	NA	1930	2480	NΛ	511 J E	NΛ	156
Selenium	mg/l	NA	<20	ΝÁ	<3.1	NΛ	N/A	NΛ	NΛ	<24.8	NΛ	<29.9 J
Silver	mg/l	NA	NA	NA	<3.3	NA	44	37	NA	<3.3	NA	<2.4
Thallium	mg/l	NA	. NA	NA	4.1 J B N	· NA	3	NΑ	NA	42.1 J B N	NA	<27.2 J
Zinc	mg/l	NA :	NA	NA	37.9 J	NÁ	8640	9690	NA	2,450	NA	1,510
Cyanide	mg/l	NA	NA	NA	<5.0 J *	NA	<10	NΛ	NΛ	13.9 J *	NΛ	<5.0 J
Sulfate	mg/l	466	367	200	80	26800	NΛ	24,000	25,000	27,000	510	1300
Turbidity	NEU	400	19	>90	67	180	>90	NΛ	>90	3.1	NΛ	0.6
pH		4.04	3.6	3.9	6	2.15	3.7	2.3	2.5	2.9	7.2	4
SC	mmho/cm	1050	710	4800	40	>8000	20000	24000	10000	27400	1100	1900
Gross Alpha	pCi/L	NA	<3	NA	1.48/.54	NA	260/110	570/180	13/10	85.3/42.2	<4	6.1/1.28
Gross Beta	pCi/L	NA	<10	NA NA	3.28/.63	NΛ	420/2:10	580/170	21/5	152/46	9.8/1.5	18.7/2.2
Total VOCs	mg/l	NA	NΛ	NA.	ND	NA NA	NA	6	13	20	9.8/1.3 N/A	0.88

Notes:

For a summary of USEPA qualifers, see Appendix F. NA = Not Analyzed N/A = Data Not Available ND = Not Detected

TABLE 7-11 (continued)

HISTORICAL GROUNDWATER DATA

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

A CONTRACT OF MICE	onitoring Well				20		
Date		1988	1989	2 1990	1997	1990	1997
Compound (1988)	Units	(filtered)	(filtered)	(filtered)		(filtered)	
Antimony	mg/l	<30	NA .	NΛ	14.7 B	NΛ	<22.3 J
Arsenic	mg/l	2	NA	2.3	<2.3	4	<16.0
Beryllium	mg/l	NA	NA	NA	<0.12	NA	0.30 B E
Cadmium	mg/l	· <1	<1	NΛ	<2.6,J	<3	7.8 J E
Chromium	mg/l	1 J	NA	NA	<2.3	<5	<3.2
Copper	mg/l	<20	NA	NA	<1.5	NA	<1.6
Lead	mg/l	27 J	N/A	2.3	<1.0	1.1	<9.5
Mercury	mg/l	NA.	NA	NA	<0.20	NA	<0.20
Nickel	mg/l	NA	NA	NA	16.8 B	NA	74.2 J E
Selenium	mg/l	<2	NA	NA	<3.0 J	NA	<15.5
Silver	mg/l	NA	NA	NA	<2.4	NA	4.3 B
Thallium	mg/l	NA	NA	NA	5.3 B	NA	<19.0 J N
Zine	mg/l	NA	NA	NA	36.1	NA	250
Cyanide	mg/l	NA	NA	NA	<5.0 J	NΛ	<5.0 J *
Sulfate	mg/l	4	<1	1:	79	830	2700
Turbidity	NTU	13	27	NA	19	NA	41
рН		8	5.7	8.1	5.6	9.4	5.6
SC	mmho/cm	5.2	125	100	500	2100	1000
Gross Alpha	pCi/L	<2	NA	NA NA	2.95/.74	<2	12.4/5.2
Gross Beta	pCi/L	2:6/1.6	NA	NA NA	4.76/.74	49/2	11.3/4.3
Total VOCs	mg/l	NA	NA	N/A	11.30	NA NA	11,5/4.5

Notes:

For a summary of USEPA qualifers, see Appendix F. NA = Not Analyzed N/A = Data Not Available ND = Not Detected

CONCENTRATION OF CONSTITUENTS EXCEEDING REMEDIAL ACTION OBJECTIVES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring Well	BR	10			73.54.1573.5	
	Date	07/09/1998	JS 07/08/1998	JD 07/08/1998	NS 07/13/1998	ND 07/13/1998	OD 07/14/1998
Compund	Remedial Action Objective		07/00/1770	0//08/1336	07/13/1996	0//13/1998	07/14/1998
Vinyl Chloride	2(1)						
I,I-Dichloroethene	2(2)	11					
1,1-Dichloroethane	70 ⁽¹⁾			<u> </u>			
Chloroform	6 ⁽¹⁾						
L.L.1-Trichloroethane	26 ⁽³⁾	36 E					
1,2-Dichloropropane	1 (2)		·				
Fetrachloroethene	1 (2)						
l'oluene	1,000 ⁽¹⁾						
Ethylbenzene	700 ⁽¹⁾					:	
Xylenes (total)	40 ⁽¹⁾						
Bis-(2-ethylhexyl)phthalate)	30 (2)						
N-Nitroso-di-n-propylamine	20 (2)						
Antimony	20(2)						
Arsenic (total)	8 (2)					<u></u>	
Beryllium	20 (2)			· · · · · · · · · · · · · · · · · · ·			
Cadmium	4 (1)	16.0		200			
Chromium (total)	100(1)						
Copper	1,000 (1)						
Cyanide	200(1)					;	
Lead (total)	10(2)					·	
Mercury (total)	2(1)						
Nickel (soluble salts)	100 (1)					1	
Selenium (total)	50(1)						
Thallium	10(2)			_ ::	† · · · · · · ·		
Zinc	5,000 (1)				†		-
Gross Alpha (PC/L)	15(1)	1					
Gross Beta (pC/L)	410		ı — — — — — — — — — — — — — — — — — — —				

Notes:

Concentrations for each constituent are reported as ug/L, except for gross alpha and gross beta, which are reported as pCi/L. Note that the RAO for gross beta is 4 millirem/year.

- (1) = New Jersey Ground Water Quality Standard (NJGWQS) (N.J.A.C. 7:9-6)
- (2) = Practical Quantitation Level (PQL)
- (3) = New Jersey Maximum Contaminant Level (NJMCL) (N.J.A.C. 7:10-16.7)

CONCENTRATIONS OF CONSTITUENTS EXCEEDING REMEDIAL ACTION OBJECTIVES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring Well Date Constituent Standard (ug/L)	OS 09/24/1998	SS 07/10/1998	SD 07/09/1998	11 07/10/1998	12 07/10/1998	24 07/22/1998
Compound	Constituent Standard (ug/L)						
Vinyl Chloride	2(1)			l		13	4.1
1,1-Dichloroethene	2 (2)					1.7	4.1
1,1-Dichloroethane	70,117						
Chloroform	6(1)						
1.1.1-Trichloroethane	26(3)	-					
1,2-Dichloropropane	1 (2)		· · · · · · · · · · · · · · · · · · ·			·-····································	
Fetrachloroethene	1 (2)						
l'oluene	1,000***					······································	<u> </u>
Ethylbenzene	700 ⁽¹⁾						<u> </u>
Xylenes (total)	40(1)					· · · · · · · · · · · · · · · · · · ·	
Bis-(2-ethylhexyl)phthalate)	30(2)						
N-Nitroso-di-n-propylamine	2012)						
Antimony	20(2)						<u> </u>
Arsenic (total)	8 (2)						
Beryllium	20(2)						
Cadmium	4(1)		22.7	184	240		
Chromium (total)	100(1)			104	240		
Copper	1,000 (1)						
Cyanide	200(1)						
Lead (total)	10(2)	281	• •			 	
Mercury (total)	2"						[<u> </u>
Nickel (soluble salts)	100***						
Selenium (total)	50"						
Thallium	10(2)						
Zinc	5,000 (1)						
Gross Alpha (PC/L)	15***			-			
Gross Beta (pC/L)	4(1)	···					

Notes:

Concentrations for each constituent are reported as ug/L, except for gross alpha and gross be (2) = Practical Quantitation Level (PQL) Note that the RAO for gross beta is 4 millirem/year.

- (1) = New Jersey Ground Water Quality Standard (NJGWQS) (N.J.A.C. 7:9-6)
- (2) = Practical Quantitation Level (PQL)

CONCENTRATIONS OF CONSTITUENTS EXCEEDING REMEDIAL ACTION OBJECTIVES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring Well Date	22 07/23/1998	23 07/23/1998	- 26 09/23/1998	27 07/21/1998	28 07/21/1998	29 07/20/1998
Compund Constituent Standard (ug/L)		VII23/1576 VII23/1976		07/23/1378	VII21/1978	0//21/1996	07/20/1998
Vinyl Chloride	2(")						Machillan in Section
1,1-Dichloroethene	2(2)						
1,1-Dichloroethane	70 (1)						
Chloroform	6(1)						
1,1,1-Trichloroethane	26 (3)						
1,2-Dichloropropane	1 (2)						
Tetrachloroethene	1127		· · · · · · · · · · · · · · · · · · ·				
Foluene	1,000(1)						
Ethylbenzene	700 (1)						
Xylenes (total)	40***		" -				
Bis-(2-ethylhexyl)phthalate)	30 (2)	****					
N-Nitroso-di-n-propylamine	20(2)		· · · · · · · · · · · · · · · · · · ·				
Antimony	20(2)	,		·			
Arsenic (total)	8 (2)						
Beryllium	20 (2)			 	<u> </u>		<u>. </u>
Cadmium	4'''	92	12.9		14.8	383	<u>'</u>
Chromium (total)	100 (1)				3 7.0	303	! <u> </u>
Copper	1,000 10						
Cyanide	200 (1)						
Lead (total)	10(2)				19.9	15.4	<u>:</u>
Mercury (total)	2"				.,,,	13,4	<u> </u>
Nickel (soluble salts)	100 (1)						
Scienium (total)	50***						
Thallium	10(2)						
Zinc	5,000***						
Gross Alpha (PC/L)	15***					51.4+/-7.0	
Gross Beta (pC/L)	4"	5.06 +/-1.04	9.66+/-1.69			106+/-11	6.06+/-1.48

Notes:

Concentrations for each constituent are reported as ug/L, except for gross alpha and gross beta, which are reported as pCi/L. Note that the RAO for gross beta is 4 millirem/year.

- (1) = New Jersey Ground Water Quality Standard (NJGWQS) (N.J.A.C. 7:9-6)
- (2) = Practical Quantitation Level (PQL)
- (3) = New Jersey Maximum Contaminant Level (NJMCL) (N.J.A.C. 7:10-16.7)

CONCENTRATIONS OF CONSTITUENTS EXCEEDING REMEDIAL ACTION OBJECTIVES

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

	Monitoring Well	30	31	32	33	34	EXXON-2
Monitoring Well Date		07/20/1998	07/15/1998	07/15/1998	05/19/1998	05/21/1999	01/26/1999
Compund	Constituent Standard (ug/L)						
Vinyl Chloride	2(1)			I		1	
1,1-Dichloroethene	2 (2)			1			
1,1-Dichloroethane	70 ⁽¹⁾			 			
Chloroform	6 ⁽¹⁾						
1,1,1-Trichloroethane	26 ⁽³⁾			1			
1,2-Dichloropropane	1 (2)						
Tetrachloroethene	1 (2)			;			
Toluene	1,000(1)			,			
Ethylbenzene	700 ⁽¹⁾						
Xylenes (total)	40(1)						
Bis-(2-ethylhexyl)phthalate)	30 (2));			
N-Nitroso-di-n-propylamine	20'(2)						
Antimony .	20 (2)						
Arsenic (total)	8 (2)						
Beryllium	20 (2)						
Cadmium	4(0)	327					
Chromium (total)	100(1)						
Copper	1,000 (1)						
Cyanide	200'(1)						
Lead (total)	10 (2)	37.4					
Mercury (total)	2(1)						
Nickel (soluble salts)	100(1)						
Selenium (total)	50 ⁽ⁱ⁾						
Fhallium	10 (2)		<u> </u>				
Zinc	5,000 (1)						 -
Gross Alpha (PC/L)	15 ⁽¹⁾		280+/-29				
Gross Beta (pC/L)	410	12.8+/-3.0	109+/-11	8.68+/-1.58	12.1+/-3.3	,	7.25+/-1.68

Notes:

Concentrations for each constituent are reported as ug/L, except for gross alpha and gross beta, which are reported as pCi/L. Note that the RAO for gross beta is 4 millirem/year.

- (1) = New Jersey Ground Water Quality Standard (NJGWQS) (N.J.A.C. 7:9-6)
- (2) = Practical Quantitation Level (PQL)
- (3) = New Jersey Maximum Contaminant Level (NJMCL) (N.J.A.C. 7:10-16.7)

TABLE 8-1

CONCENTRATIONS OF LEAD AND CADMIUM IN PRIVATE WELL SAMPLES

Phase II Groundwater Investigation NL Industries Superfund Site Pedricktown, New Jersey

		Lead Concen	tration (ug/L) ⁽¹⁾	Cadmium Concentration (ug/L) ⁽¹⁾		
Well Samp	Sample Date	Total	Filtered	Total	Filtered	
Butcher	01/26/1999	4.6	<1.0	<0.30	<0.30	
Cassano	07/23/1998	12.6	<11	<0.40	<0.40	
CCC (2)	07/10/1998	<1.1 NJ	<1.1 NJ	<0.40	0.44 B	
Cruz ⁽²⁾	07/10/1998	15.5 NJ	<1.1 NJ	<0.40	0.54 B	
Eyler (3)	07/24/1998	26.5	27.4	0.82 B	0.79 B	
Eyler	01/26/1999	10.5	4.2	0.86 B	0.81 B	
Gates	07/14/1998	<2.2	<5.5	<0.40	<0.40	
Kinney ⁽²⁾	07/14/1998	<1.1 NJ	<1.1 NJ	<0.40	0.71 B	
McCourt	07/22/1998	<1.1	3.0 B	0.56 B	0.67 B	
Wistar (2)	07/13/1998	6.9 NJ	2.8 BNJ	0.41 B	0.52 B	

⁽¹⁾ Laboratory results of groundwater samples analyzed by USEPA SOW ILM04.0; for a summary of USEPA laboratory analytical qualifiers, See Appendix F.

The lead concentrations reported for this sample are the results obtained from a redigestion and analysis of the sample in a new batch; the original results were rejected because of a quality control outlier within the initial analytical batch.

Due to an inadequate purge of the well and associated piping, the sample results are not believed to be representative.

GROUNDWATER LEVELS PRIOR TO AND AFTER COMPLETION OF THE PUMPING TEST

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

PF	PRE-TEST GROUNDWATER ELEVATIONS 6/7/99 BETWEEN 1300 AND 1400 HRS.							
			TINO.					
WELL	TOC (ft)	DTW (ft)	GW ELEV.(ft)					
SD	13.39	7.15	6.24					
SS	12.7	6.11	6.59					
S4-1*	12	5.2	6.8					
T2-3	11.34	6.76	4.58					
TC		7.25						
T-4	12.12	7.31	4.81					
T-A		7.58						
OS	11.95	7.63	4.32					
OD	12.47	8.33	4.14					
11	11.19	5.41	5.78					
PD	12.86	6.85	6:01					
BR	10.82	5.5	5.32					
PS	11.89	5.72	6.17					
PW	11.55	6.18	5.37					
OW	11.83	6.49	5.34					
KS	11.54	6.04	3.5					
KD	11.77	6.27	5.5					
24	13.04	17.56	-4.52					
JD	14.02	7.48	6.54					
ÇLE JS . See	13.89	火炎火 7.38 八八代	6.51					
10R	14.02	17,31	-3,29					
ID :	17.18	10.55	6.63					
IS	17.35	8.19	9.16					
HD	18.67	13.65	5.02					
HS	18.4	13.8	4.6					
28	16.4	10.92	5.48					
ા ુ 27 ્રસ	16.57	11.07	5.5					
30	16.29	11.43	5.16					
29	16.26	10.79	5.47					
32	14.28	9.77	4.51					
%-31-0 °	14.33	9.21	5.12					
RĐ	15.56	9.58	5.98					
RS	15.4	7.42	7.98					

	PUMPING-TEST GROUNDWATER ELEVATIONS 6/10/99 BETWEEN 1300 AND 1400 HRS.							
WELL	TOC (ft)	DTW (ft)	CW FLEW (A)					
SD	13.39	8.17	GW ELEV.(ft)					
SS	13.39	7.01	5.22					
S4-1*	12.7	6.2	5.69					
T2-3	11.34	7.02	5.8					
TC	11.34	7.55	4.32					
T-4	12.12	.,	4.42					
T-A	12.12	7.66 7.96	4.46					
OS See	11.05		2.00					
OD	11.95	7.96	3.99					
11		8.58	3.89					
	11.19	5.6	5.59					
PD	12.86	7.09	5.77					
BR	10.82	5.74	5.08					
PS	11.89	5.96	5.93					
PW	11.55	14.5	-2.95					
· OW	11.83	9.51	2.32					
∗ KS ၞ	11.54	8.77	2.77					
KD	11.77	9.27	2.5					
24	13.04	17.92	-4.88					
JD	14.02	7.91	6.11					
JS 💮	··· 13.89	7.82	6.07					
10R	14.02	17.67	-3.65					
ID	17.18	10.83	6.35					
is is	17.35	8.43	8.92					
HD	18.67	13.89	4.78					
HS	18.4	14.03	4.37					
28	16.4	11.96	4.44					
27	16.57	12.03	4.54					
30	16.29	11.36	4.93					
29	16.26	N. J. M. I.	5.16					
32	14.28	9.97	4.31					
31	14.33	9.4	4.93					
RD	15.56	9,77	5.79					
RS ₃	(f) 15.18	152 7,57:	7.61					

DIFFERENCE	DRAWDOWN
(ft)	(ft)
1.02	1.02
- 24 0.9	0.9
1	1
0.26	
••	
0.35	14.14.25.35.45.45.45.45.45.45.45.45.45.45.45.45.45
	••:
0.33	
0.25	
0.19	
0.24	
0.24	
0.24	ま物質なみ→798.87 ご
8.32	8.32
3.02	3.02
2.73	2.73
3	3
0.36	
0.43	
0.44	
0.36	
0.28	••:
0.24	ita in erra <u>≅</u> i ka in
0.24	:
0.23	
1.04	1.04
0.96	0.96
0.23	
0.31	1200 N
0.2	
0,19	380 300 - 0000
0.19	
-15 0.37 F 65	

- TOC for Wells PW, OW, OS, OD, KS, KD, HS, HD, SS, T-4, RS, RD, PS, 24, 28, 27, 30, 29, 32, and 31 adjusted by adding 1.12 feet to convert from NAVD 1988 to NGVD 1929
- 2) Shaded cells denote wells used in construction of shallow potentiometric surface maps and flow model
- 3) Water-level differences less than 0.9 feet are attributed to the natural decline of the water table during the 1999 drought and do not represent drawdown
- TOC is estimated

TABLE 9-2
SUMMARY OF GROUNDWATER pH and TURBIDITY⁽¹⁾
DURING AQUIFER TEST

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Sample Designation	Date ©	Time	Turbidity ⁽²⁾	pH ⁽³⁾
PT-1-060799	06/07/1999	1500	1.40	3.23
PT-2-060799	06/07/1999	1537	0.60	3.11
PT-3-060799	06/07/1999	1630	NT	3.58
PT-4-060799	06/07/1999	1730	0.85	3.15
PT-5-060899	06/08/1999	130	0.30	3.69
PT-6-060899	06/08/1999	930	0.67	3,41
PT-7-060899	06/08/1999	1720	0.86	3.2
PT-8-060999	06/09/1999	1330	0.94	2.94
PT-9-060999	06/09/1999	1020	0.87	3.32
PT-10-060999	06/09/1999	1750	0.92	3.25
PT-11-061099	06/10/1999	130	0.00	3.11
PT-12-061099	06/10/1999	930	1.38	3.28
PT-13-061099	06/10/1999	1415	1.90	3.15

TABLE 9-3

SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED DURING AQUIFER TEST

Phase II Groundwater Evaluation NL Industies Superfund Site Pedricktown, New Jersey

Sample Designation	Date	Time	Chloroform, ug/L	Toluene, ug/L
PT-1-060799	06/07/1999	1500	0.23 J	0.17 J
PT-8-060999	06/09/1999	1330	0.25 J	0.25 J
PT-13-061099	06/10/1999	1415	0.19 J	ND
TRIP BLANK	06/09/1999	NA	ND	ND
TRIP BLANK	06/10/1999	NA	ND	ND
QA/QC Samples		*		
QA-1	06/10/1999	NA	ND	ND
PT-ERB-060799	06/07/1999	930	ND	ND

- J estimated concentration below reporting limit
- ND Not detected above the method detection limit
- NA Not applicable

SUMMARY OF LEAD AND CADMIUM IN GROUNDWATER EXTRACTED DURING AQUIFER TEST

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

Sample Designation	Date	Time	Total Lead	Dissolved Lead	Total Cadmium	Dissolved Cadmium
PT-1-060799	06/07/1999	1500	6.1	4,6	43.9	45.2
PT-2-060799	06/07/1999	1537	3.0	1,4B	45.7	46.3
PT-3-060799	06/07/1999	1630	1.7B	ND	47.8	48.3
PT-4-060799	06/07/1999	1730	2.7B	ND	46.2	46.1
PT-5-060899	06/08/1999	0130	6.6	ND	44.8	43.9
PT-6-060899	06/08/1999	930	2.2B	ND	42.9	42.9
PT-7-060899	06/08/1999	1720	1.6B	ND	42.2	41.5
PT-8-060999	06/09/1999	0130	9.3	5.3	41.0	38.7
PT-9-060999	06/09/1999	1020	3.4	ND	39.2	38.9
PT-10-060999	06/09/1999	1750	2.9B	ND	39.0	38.2
PT-11-061099	06/10/1999	0130	ND	ND	38.0	37.9
PT-12-061099	06/10/1999	930	7.0	1.5B	36.8	37.2
PT-13-061099	06/10/1999	1415	1.7B	1.2B	37,3	35.3
QA/QC Samples						
PT-DUPLICATE-061099	06/09/1999		ND	ND	36.4	36.2
QA-1	06/10/1999		4.5	ND	36.5	35.0
PT-ERB-060799	06/07/1999	930	5.5	0.94B	0.85B	ND

⁽t) Measurements obtained using portable field instruments
(2) Turbidity reported in nephelometric turbidity units (NTUs)
(3) pH reported in standard units (SU)
(4) All concentrations in ug/L (ppb)

TABLE 9-5

SUMMARY OF GENERAL GROUNDWATER CHEMISTRY(1) DURING AQUIFER TEST

Phase II Groundwater Evaluation NL Industies Superfund Site Pedricktown, New Jersey

Sample Designation	Date	Time	Bicorbonate Alkalinity	Carbonate Alkalinity	Chloride	Sulfate
PT-1-060799	06/07/1999	1500	ND	ND	53.4	3750
PT-8-060999	06/09/1999	1330	ND	ND	46.4	3200
PT-13-061099	06/10/1999	1415	ND	ND	40	2920
QA/QC Samples						2,20
QA-1 ⁽²⁾	06/10/1999	1420	ND	ND	40.3	2780
PT-ERB-060799 ⁽³⁾	06/07/1999	930	13.2	ND	4.9	1.2

Sample Designation	Date	Time	Total Phosphorous	Total Dissolved Solids	Total Suspended Solids
PT-1-060799	06/07/1999	1500	ND	5260	6.4
PT-8-060999	06/09/1999	1330	ND	4300	ND
PT-13-061099	06/10/1999	1415	. ND	3780	ND
QA/QC Samples					
QA-1 ⁽²⁾	06/10/1999	1420	ND	3720	ND
PT-ERB-060799 ⁽³⁾	06/07/1999	930	0.12	,153	ND

- 1 Results reported in milligrams per liter (mg/L)
- 2 Blind duplicate sample of PT-13-061099
- 3 Equipment rinsate blank sample

ESTIMATED PERFORMANCE OF PUMP AND TREAT TECHNIQUE

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

From mass calculations (Table 2-1): Mass of lead

Mass of lead in groundwater = 9 lbs

Mass of cadmium in groundwater = 14 lbs

From Capture Zone Evaluation (Section 12): Estimate average total groundwater extraction rate = 37 gpm = 0.05 mgd

Time required to extract lead (if possible): .001 mg/L*8.34*0.05 mgd = 0.0004 lbs of lead per day extracted

$$\frac{9 \text{ lbs}}{0.0004 \text{ lbs/d}} = 225 \text{ days} = 61 \text{ years (if possible)}$$

Time required to extract cadmium (if possible): .002 mg/L * 8.34 x 0.05 mgd = 0.0008 lbs of cadmium per day extracted

$$\frac{14 \text{ lbs}}{0.0008 \text{ lbs/d}} = 17,500 \text{ days} = 48 \text{ years (if possible)}$$

Note:

Concentrations of lead and cadmium in extracted groundwater are expected to be non-detectable at steady state. Therefore, assume average concentrations of lead in extracted groundwater to be 1 ppb. For cadmium, assume the concentration will be up to 2 ppb to be conservative. It is possible that the concentrations of lead and cadmium in extracted groundwater will be lower than estimated.

TABLE 11-1
MINERAL ANALYSIS BY X-RAY DIFFRACTION

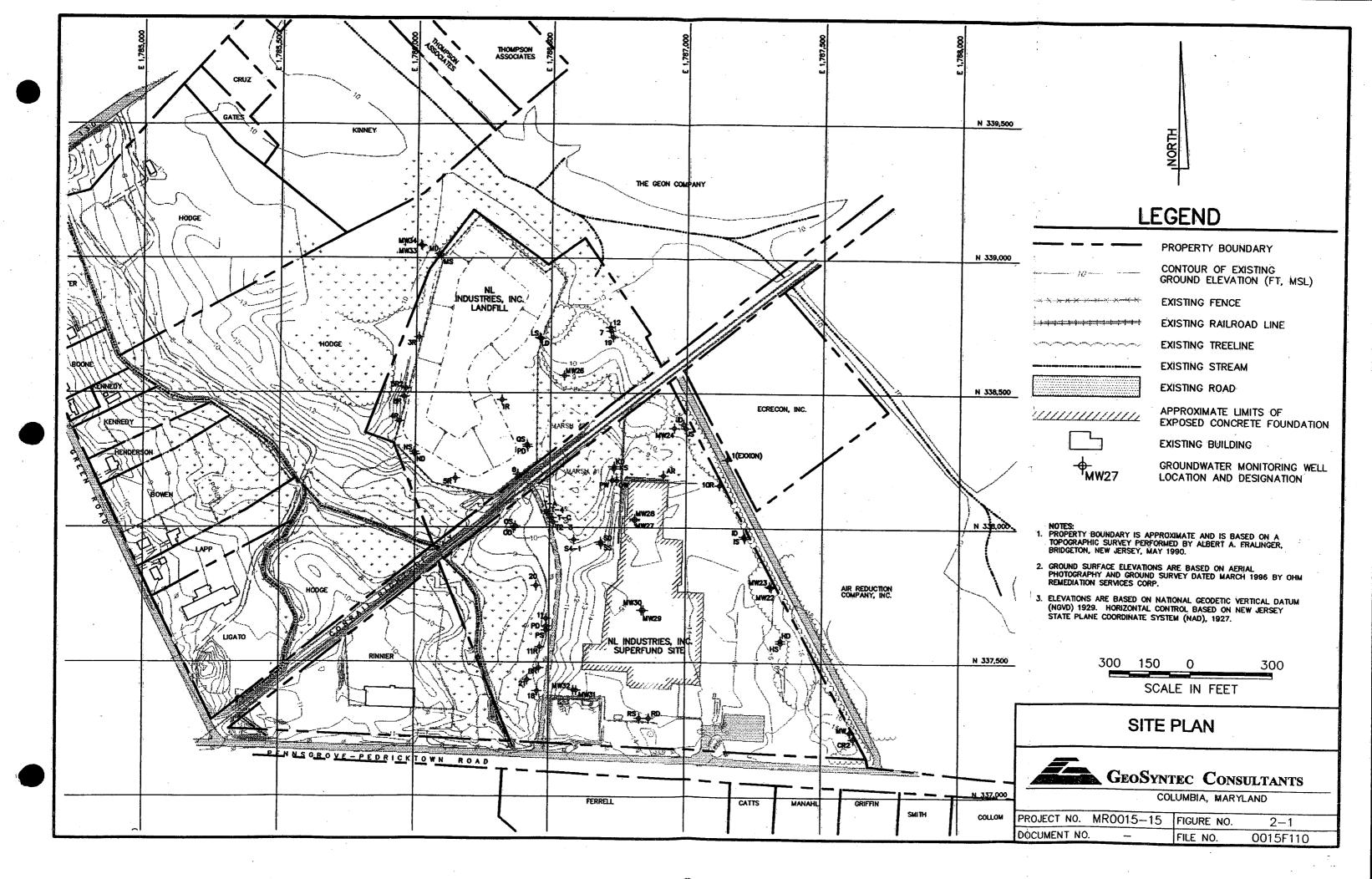
Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

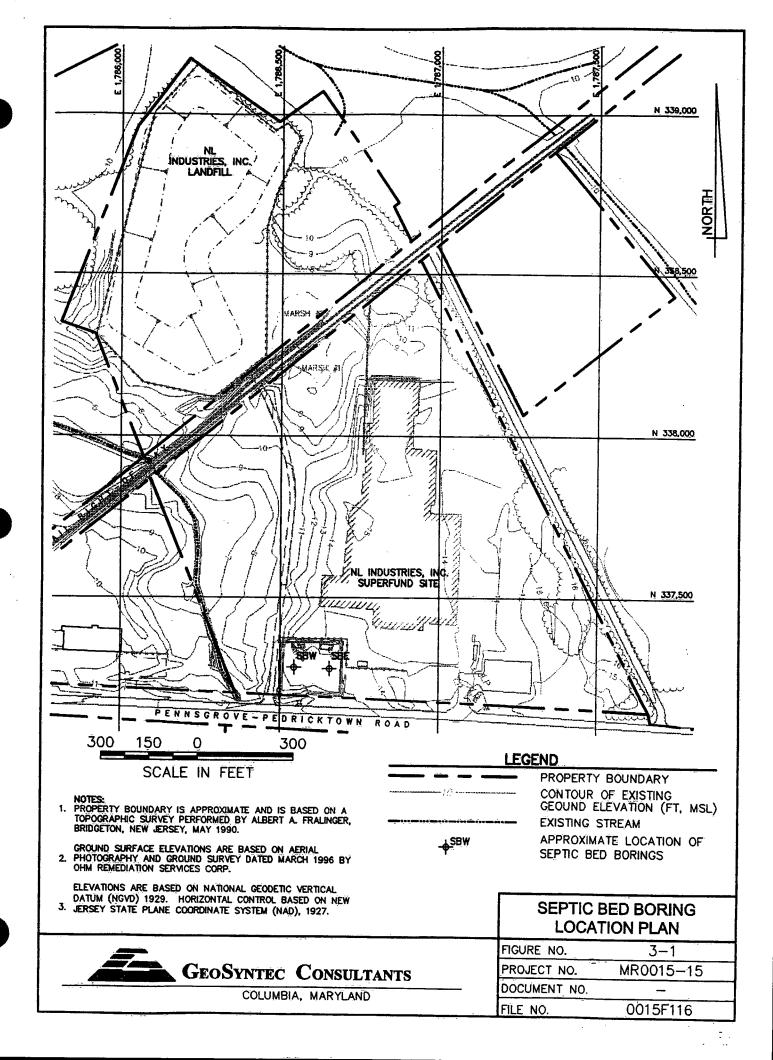
Whole Rock Composition (weight %)											Relative Clay Abundance (Normalized to 100%)				
Sample ID	Quartz	K feldspar	Plagioclase	Calcite	Dolomite	Siderite	Pyrite	Pb phosphate	Hematite	Total Clays	Illite/Mica	Kaolinite	Chlorite	Smectite	Illite/Smectite
SO2910-16 7/15/98	83	3	2	0	1	0	0	0	Tr	1:1	22	78	0	0	0
SV2812-16-7/16/98	96	1	1	0	Tr	0	0	Tr	0	2	40	60	0	0	0
SV26 2/20/98	99	0	Tr	0.	Tr	0	0	0	0	1	31	69	0	0	0
SV-40	96	0	Tr	0	1	0	0	Tr	0	3	36	64	0	0	0

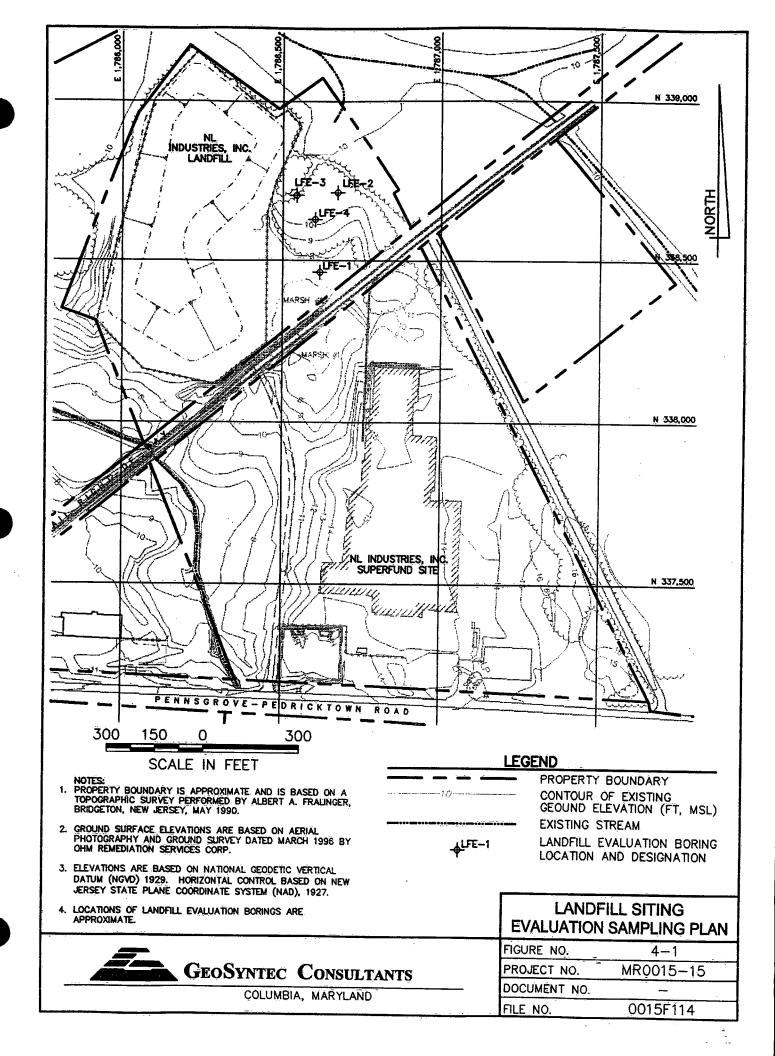
TABLE 11-2

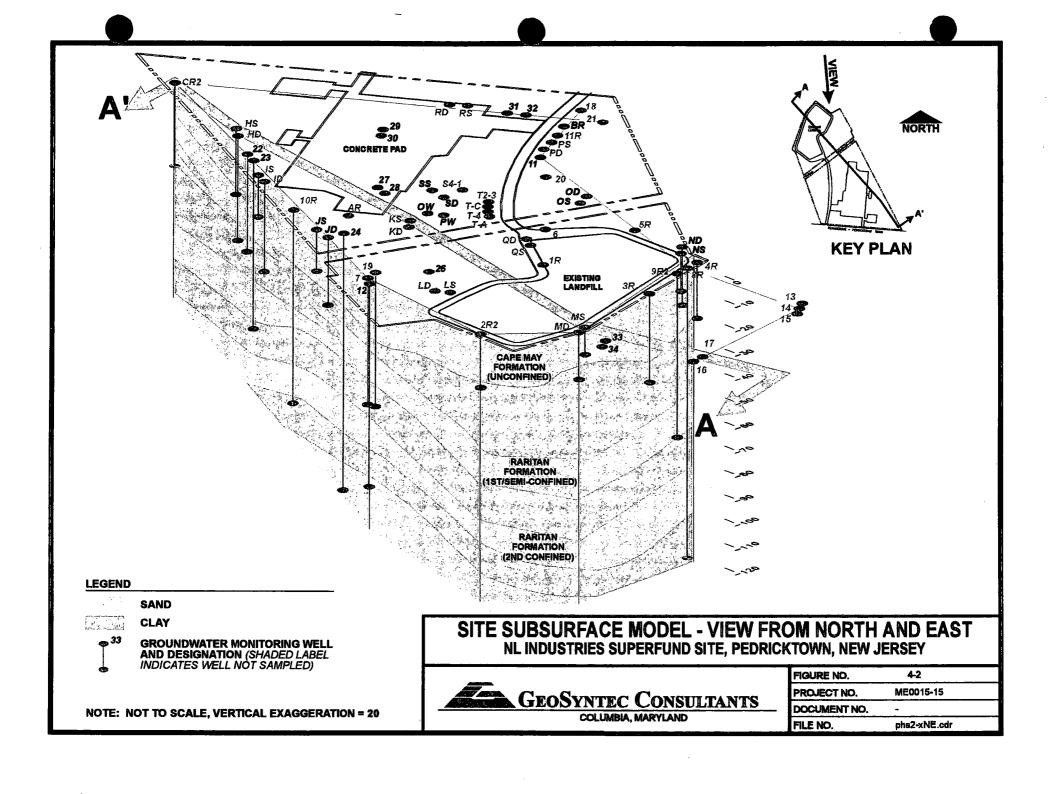
SUMMARY OF LEAD AND CADMIUM SOIL CONCENTRATIONS AND THEIR SOIL PHASE ASSOCIATIONS

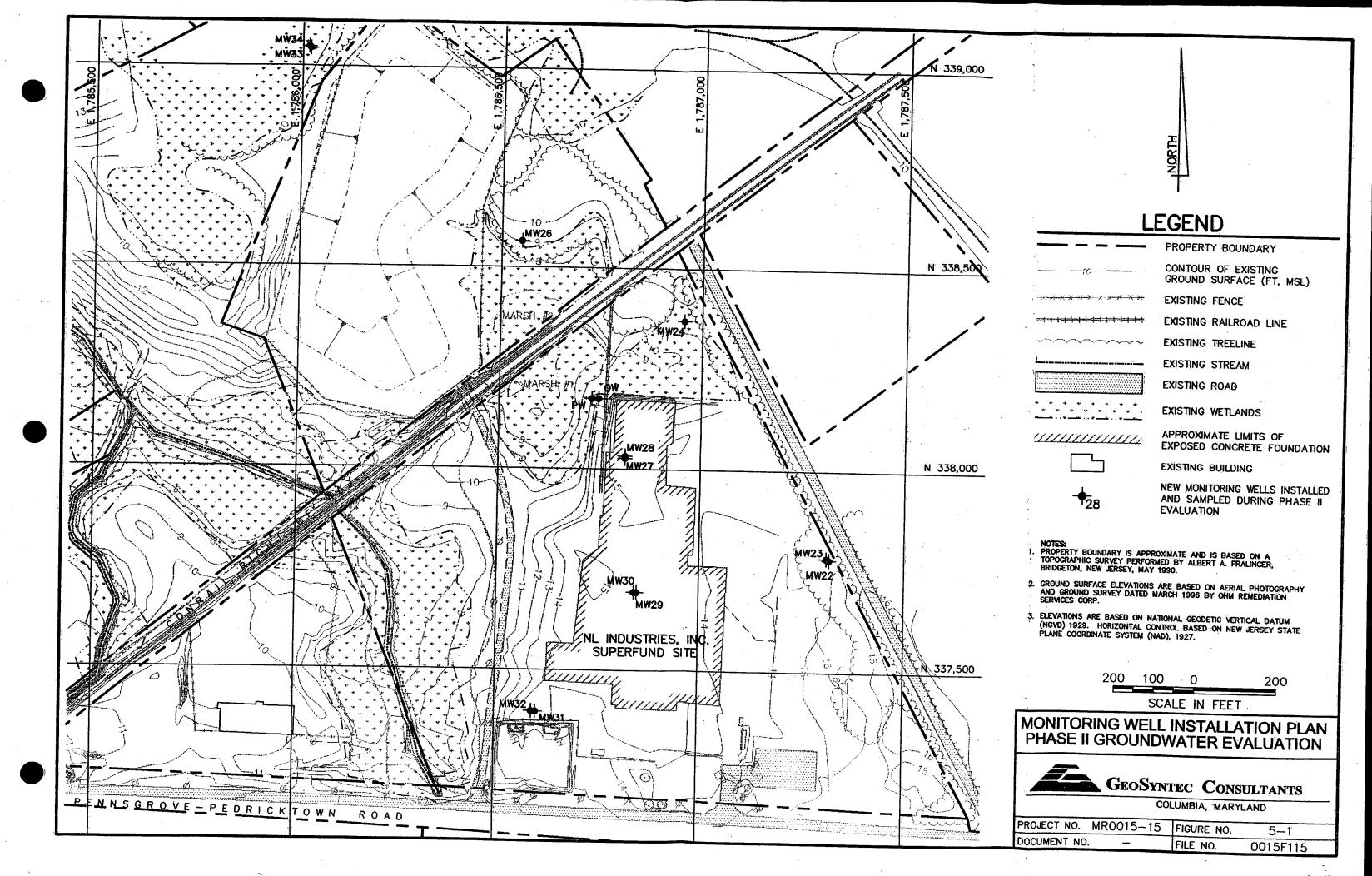
Phase II Groundwater Evaluation NL Industies Superfund Site Pedricktown, New Jersey

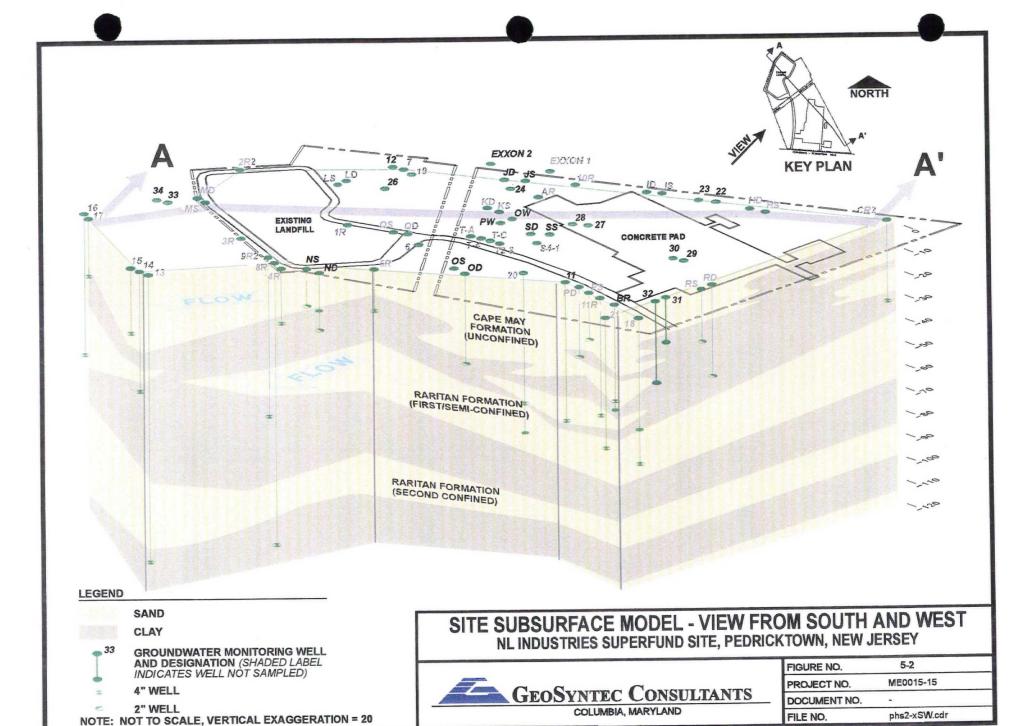

ľ		Concentration (mg/kg) ^a									
		Exchangeable	Carbonate	Fe-Mn oxides	Organic	Residual	Total				
Analyte	Sample :	Extraction by MgCl ₂ solution, pH=7; analysis by EPA Method 200.8	Extraction by Na- acetate solution, pH=5.0; analysis by EPA Method 200.8	Extraction by NH ₂ OH-HCl in acetic acid, pH=2; analysis by EPA Method 200.8	Extraction by HNO ₃ , H ₂ O ₂ , & NH ₄ -acetate, pH=2; analysis by EPA Method 200.8	Extraction by HNO ₃ , HF, HClO ₄ , HCl, pH<1; analysis by EPA Method 200.8	Extraction by concentrated HNO ₃ and HCl (EPA Method 3010A); pH<1; analysis by EPA Method 6020				
Lead	SV2910-12071598	<0.1	<0.1	0.36	<0.1	2.2	2.8				
	SV2812-16071698	<0.1	0.17	<0.1	<0.1	0.96	1.9				
	SV071698-Dup	<0.1	0.14	<0.1	<0.1	0.87	2.3				
	SV26072098	<0.1	<0.1	0.14	<0.1	1.6	4.1				
Cadmium	SV2910-12071598	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
1	SV2812-16071698	<0:1	<0.1	<0.1	<0.1	<0.1	<0.1				
1	SV071698-Dup	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
	SV26072098	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				

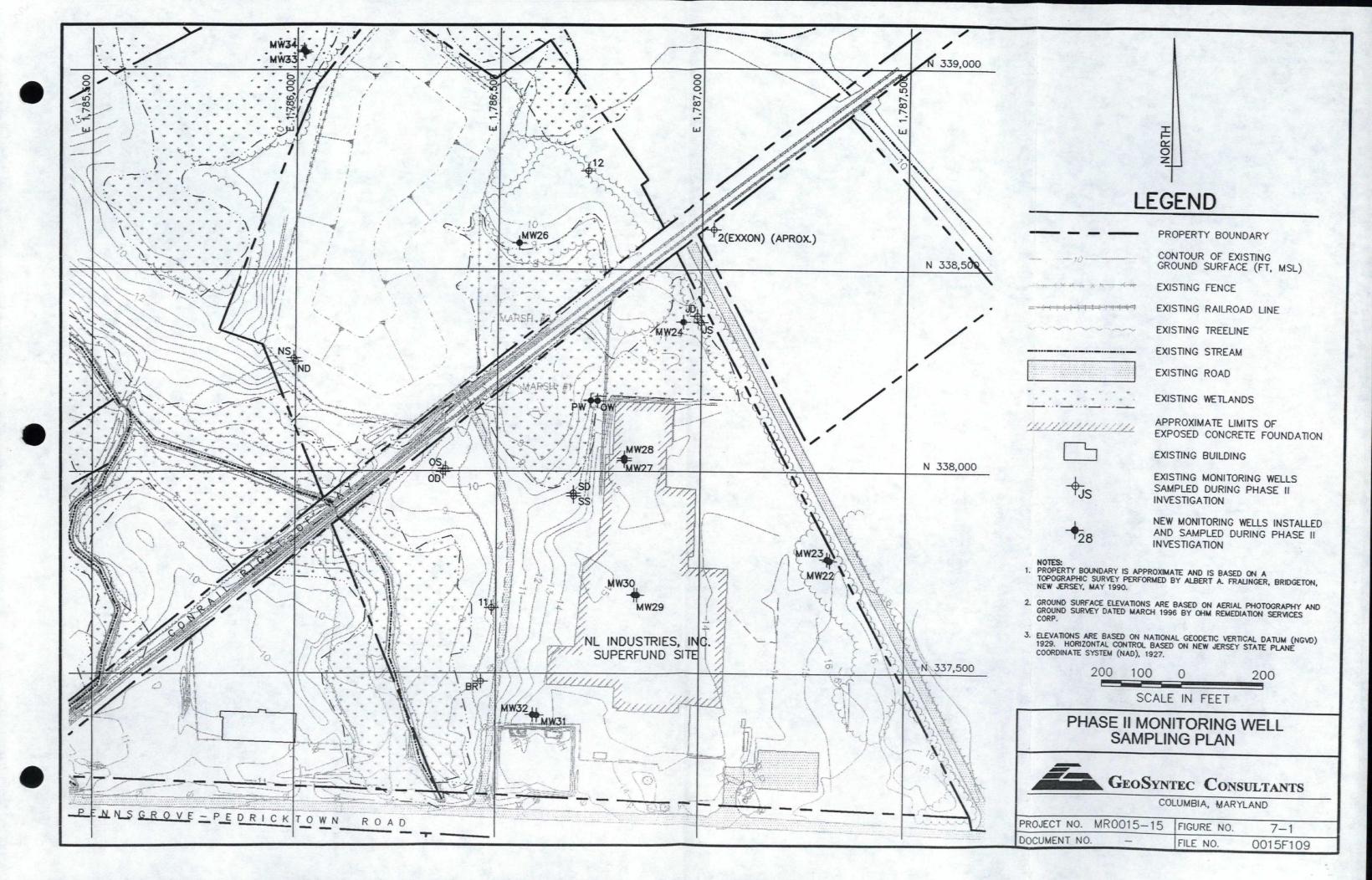

a. Lead and cadmium concentrations associated with each of the identified soil phases are listed below along with summaries of the laboratory extraction and analysis methods. Extraction methods for lead and cadmium associated with the exchangeable, carbonate, Fe-Mn oxide, organic, and residual soil phases are as described in Harrison, R. M., Laxen, D.P., and Wilson, S.J., 1981, "Chemical Associations of Lead, Cadmium, Copper, and Zinc in Street Dusts and Roadside Soils", Environmental Science & Technology, V.15, No. 11, pp. 1378-1383, November. This methodology is further described in Tessler, A., Campbell, P.G.C., and Bisson, M., 1979, "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals," Analytical Chemistry, V.51, No.7, Jüne.

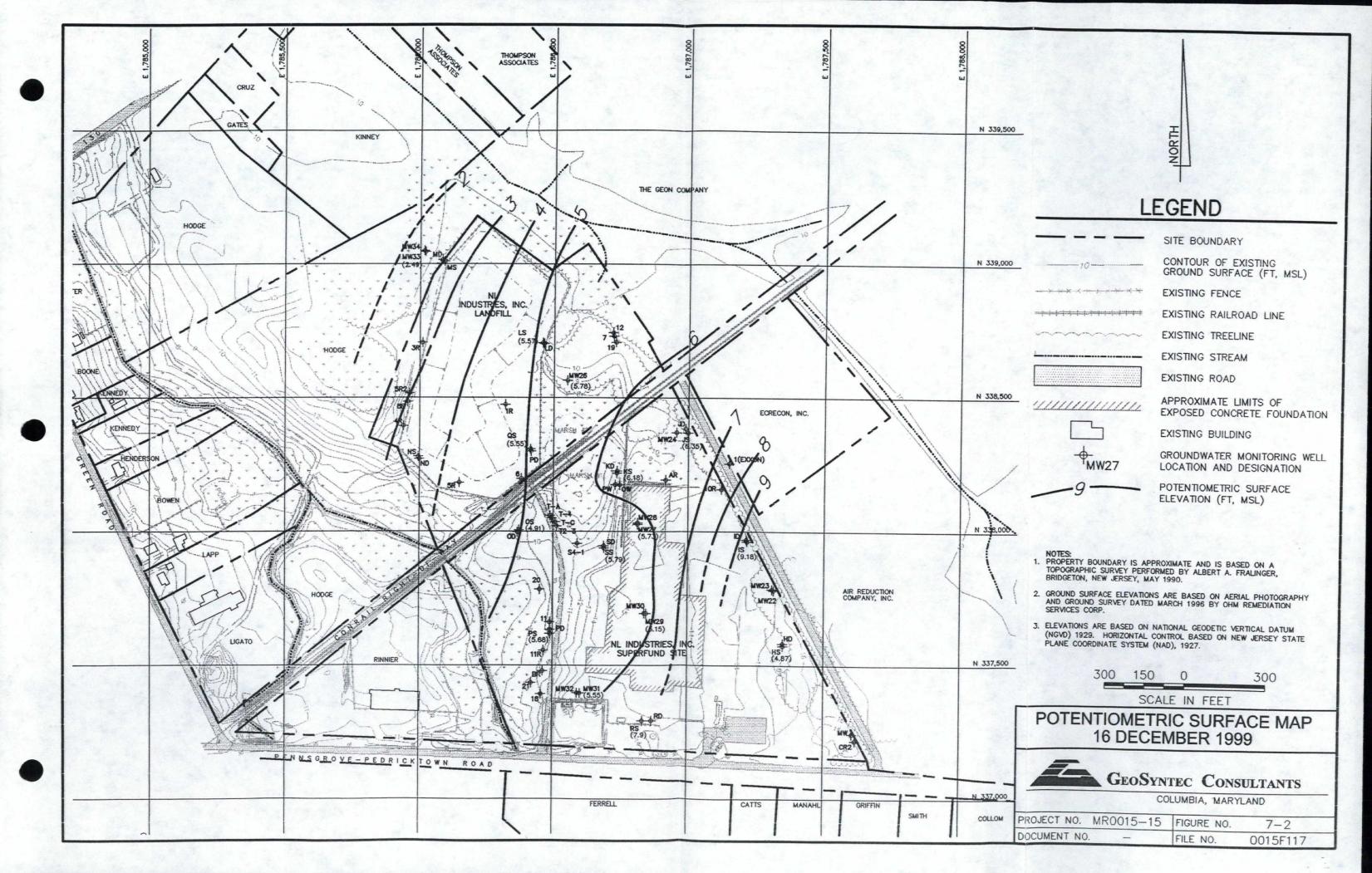

TABLE 11-3 SUMMARY OF SELECTED SOIL PROPERTIES

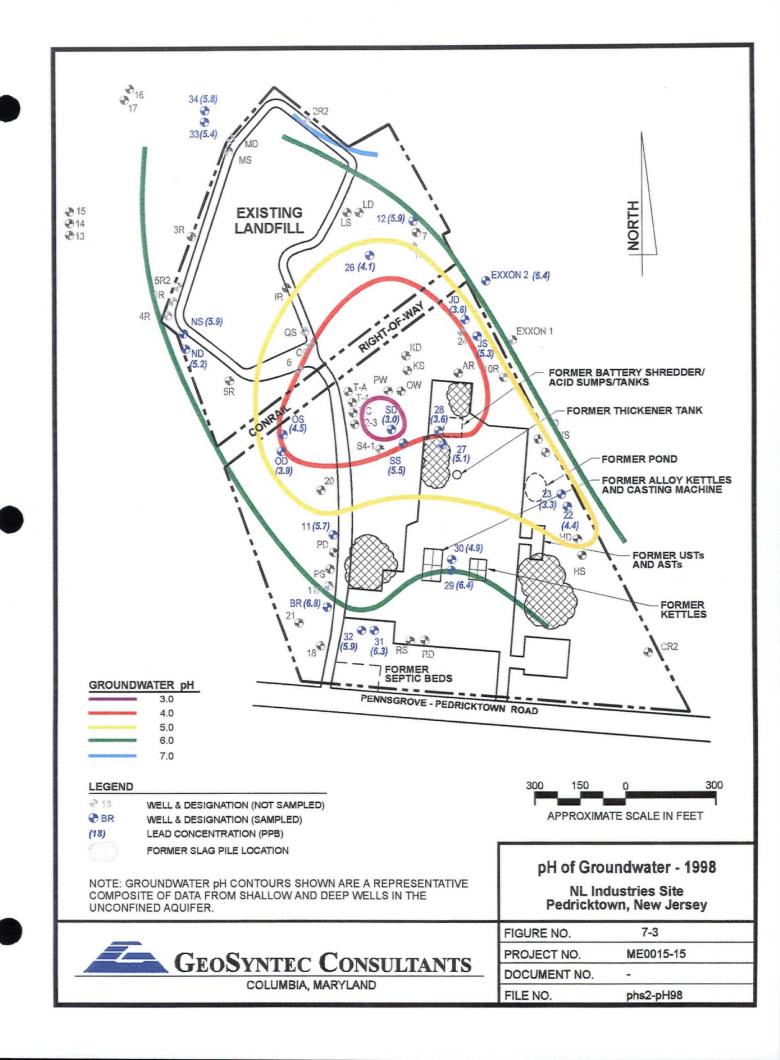

Phase II Groundwater Evaluation NL Industries Superfund Site Pedricktown, New Jersey

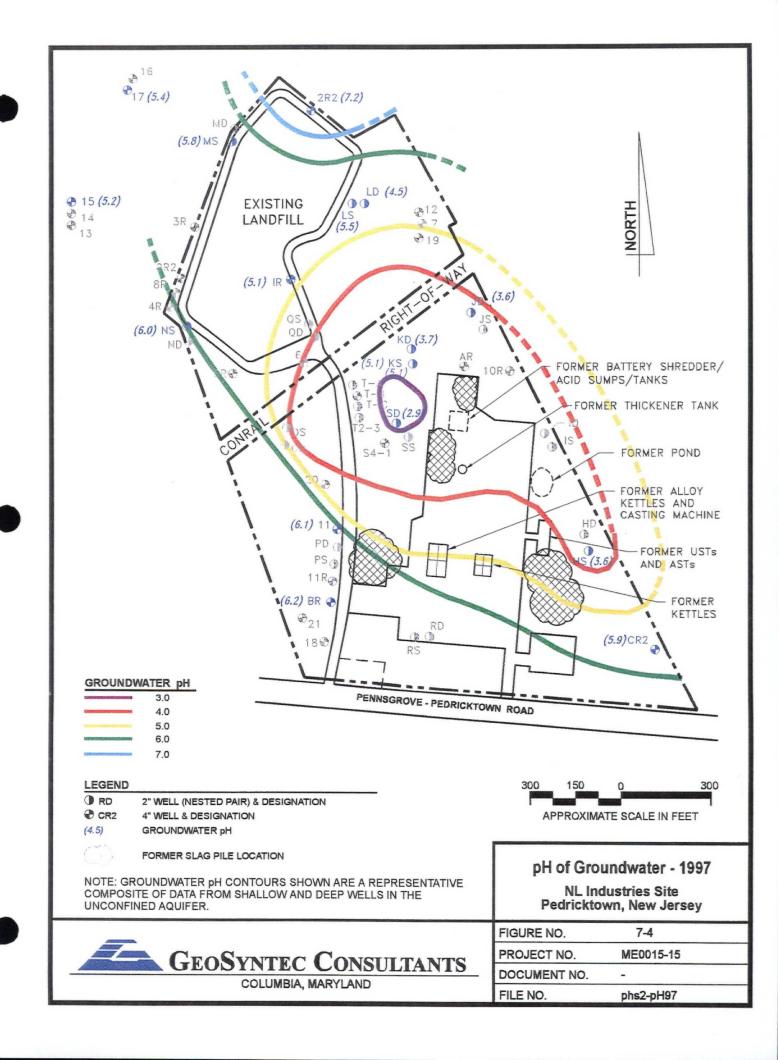

Sample	pН	CEC (meq/100g dw)
SV2910-12071598	7.3	3.57/1.70
SV2812-16071698	6.6	1.13/0.89
SV071698-Dup	6.0	0.91/0.91
SV26072098	6.2	2.72/1.83

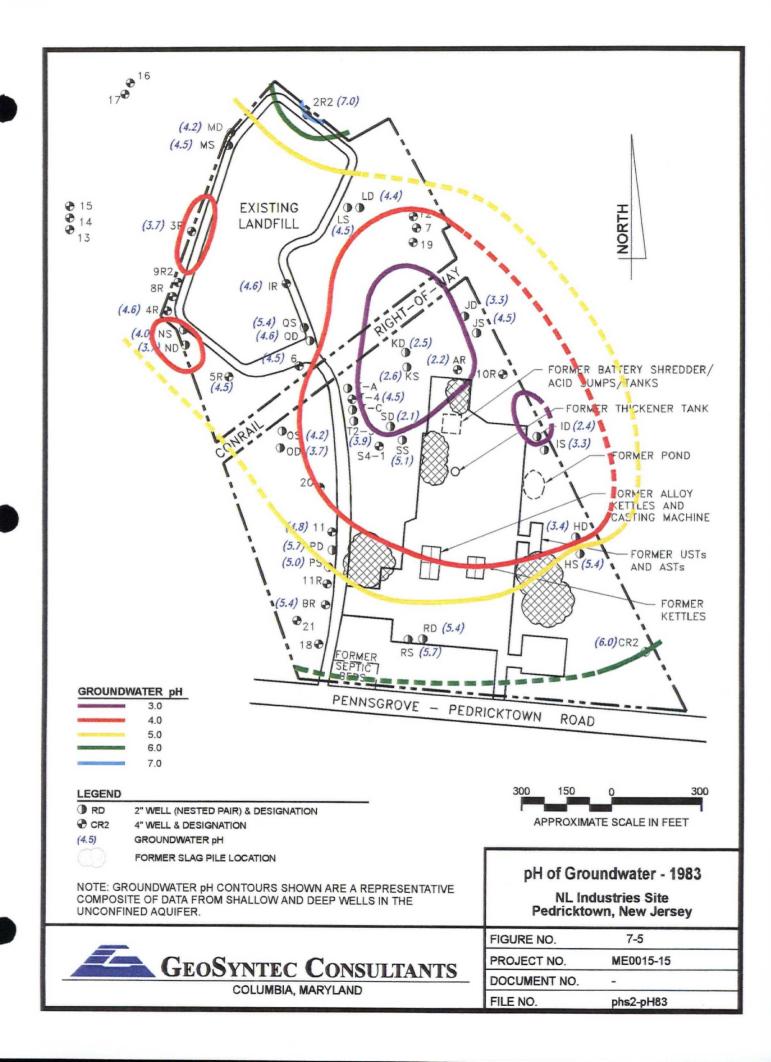


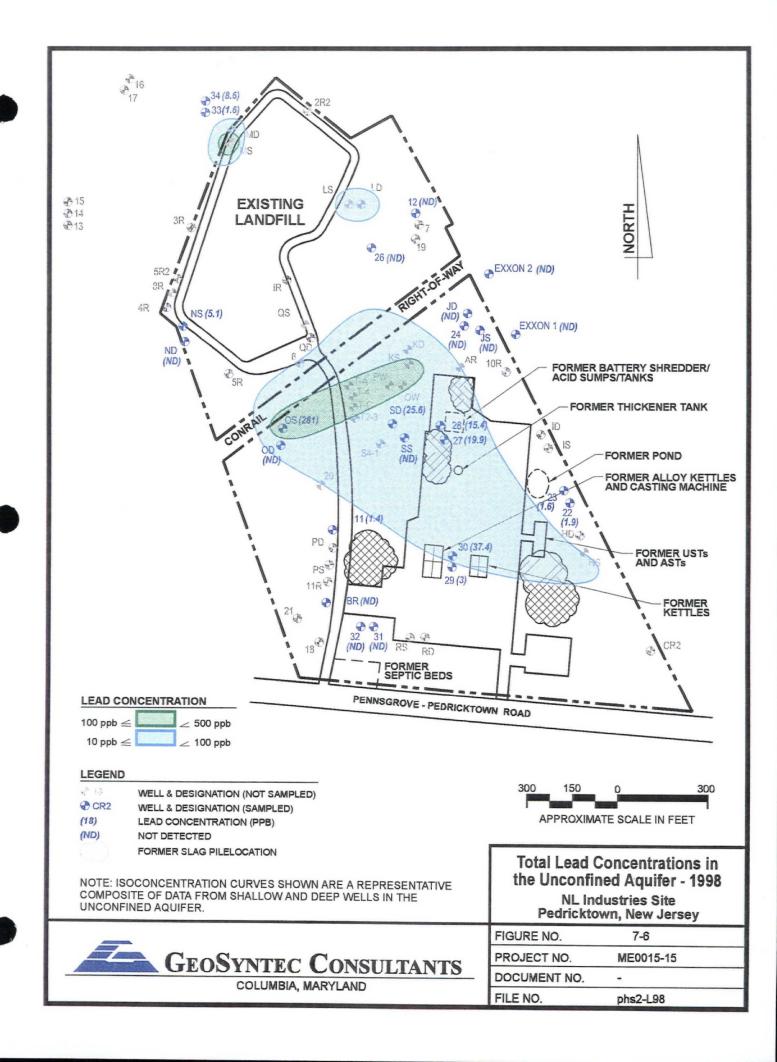


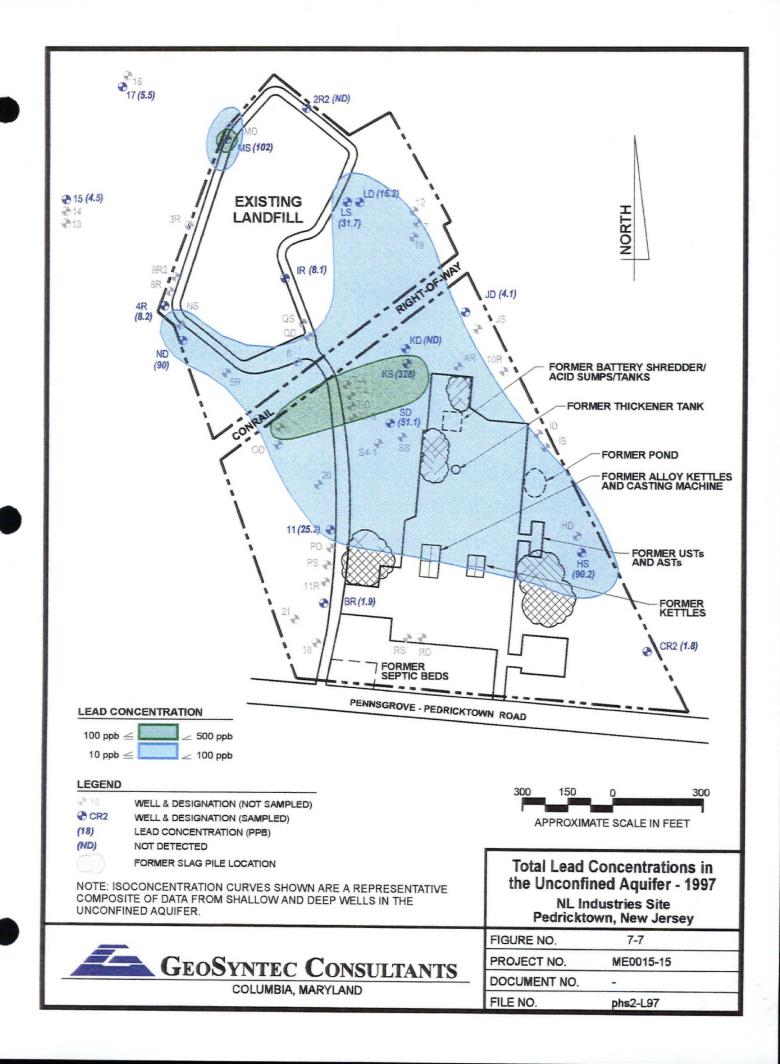


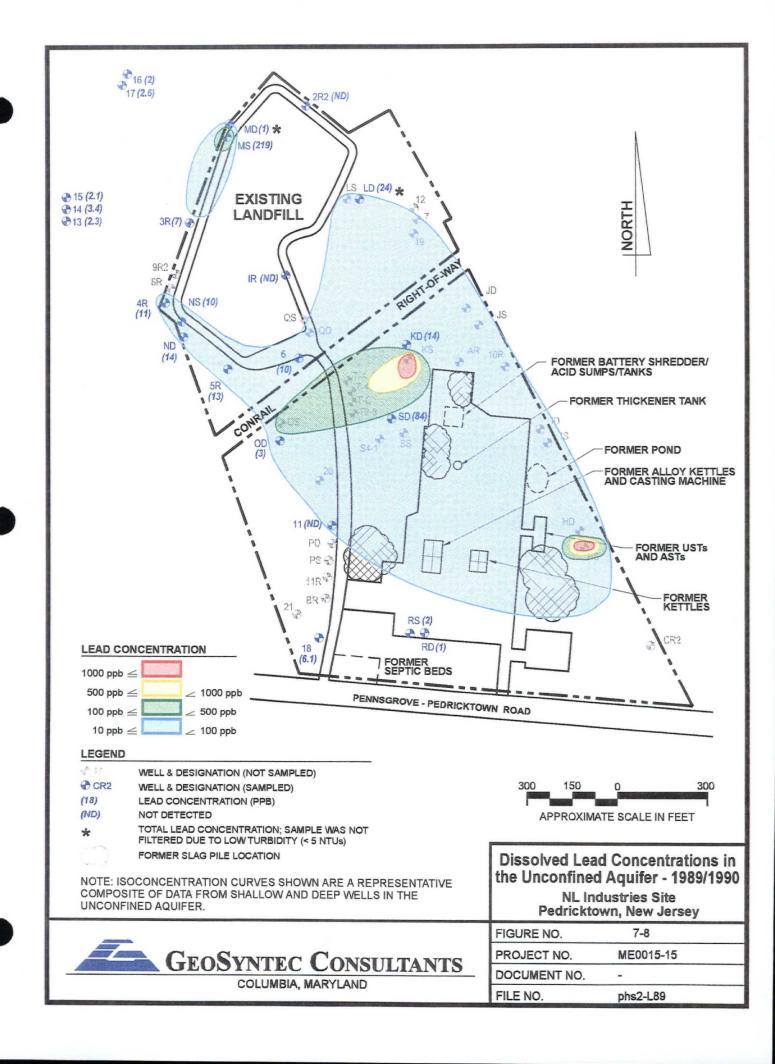


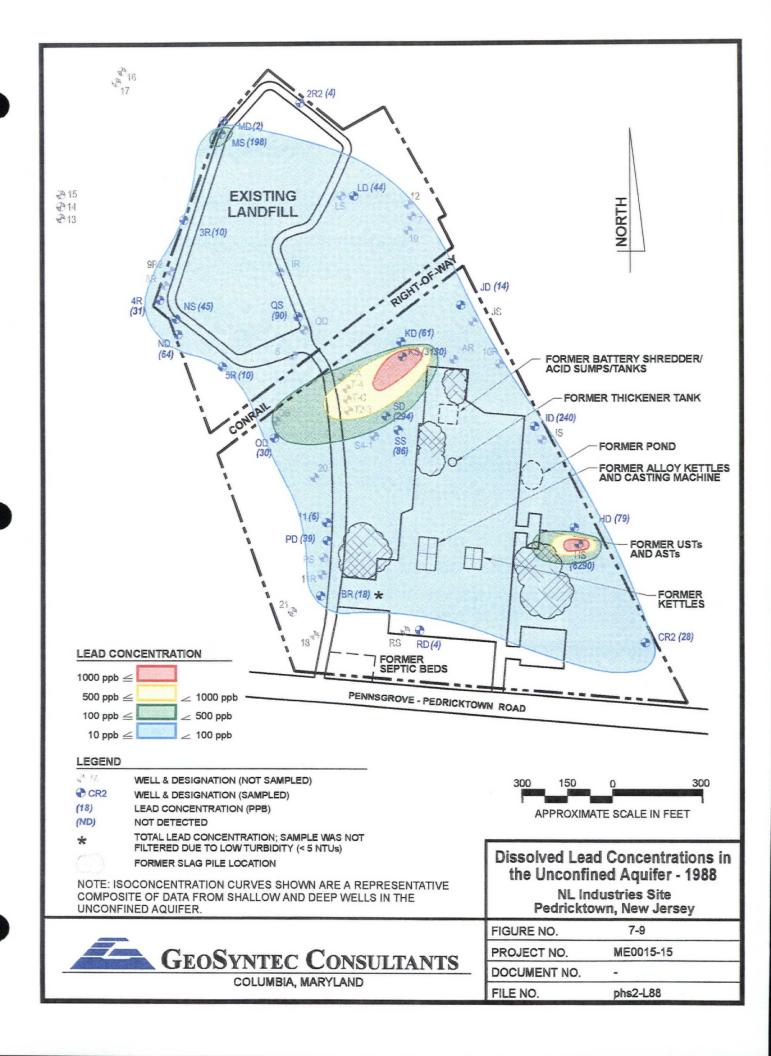


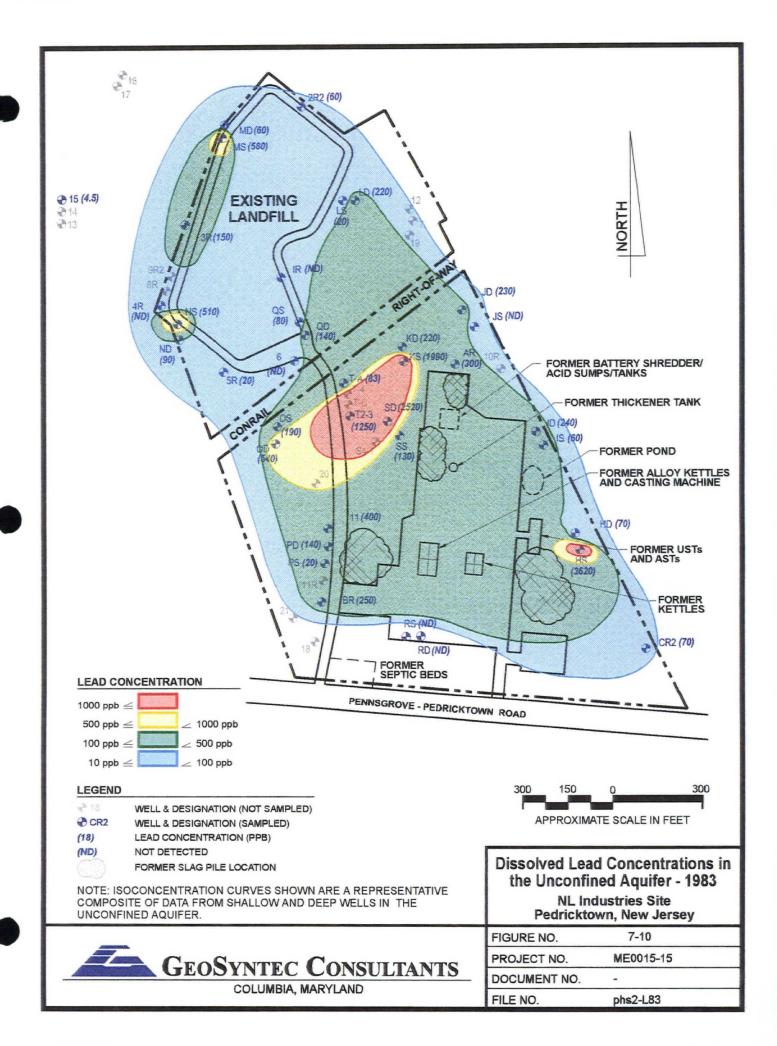


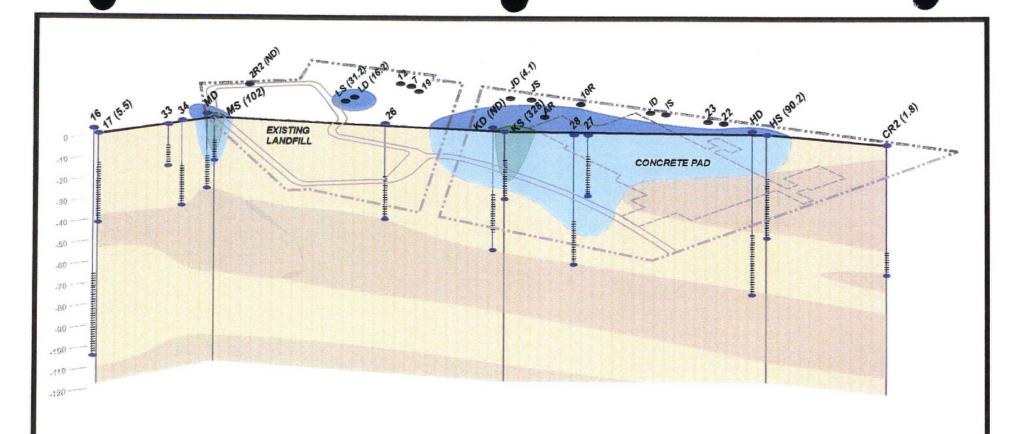












LEAD CONCENTRATION

LEGEND

SAND

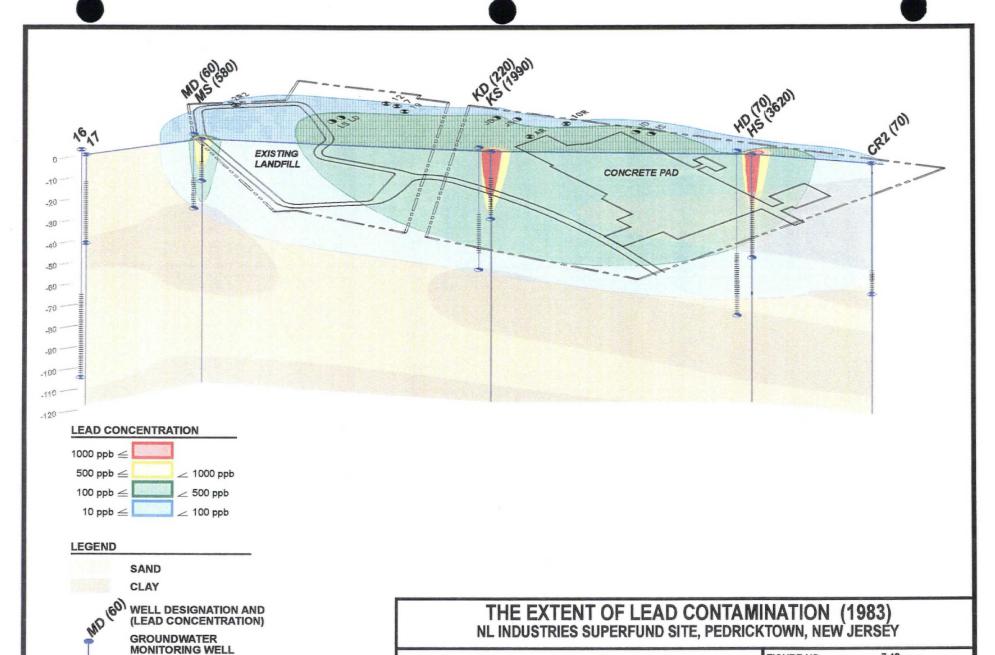
CLAY

WELL DESIGNATION AND (LEAD CONCENTRATION)

GROUNDWATER MONITORING WELL

INDICATES SCREENED PORTION OF PIPE

NOTE: NOT TO SCALE, VERTICAL EXAGGERATION = 20

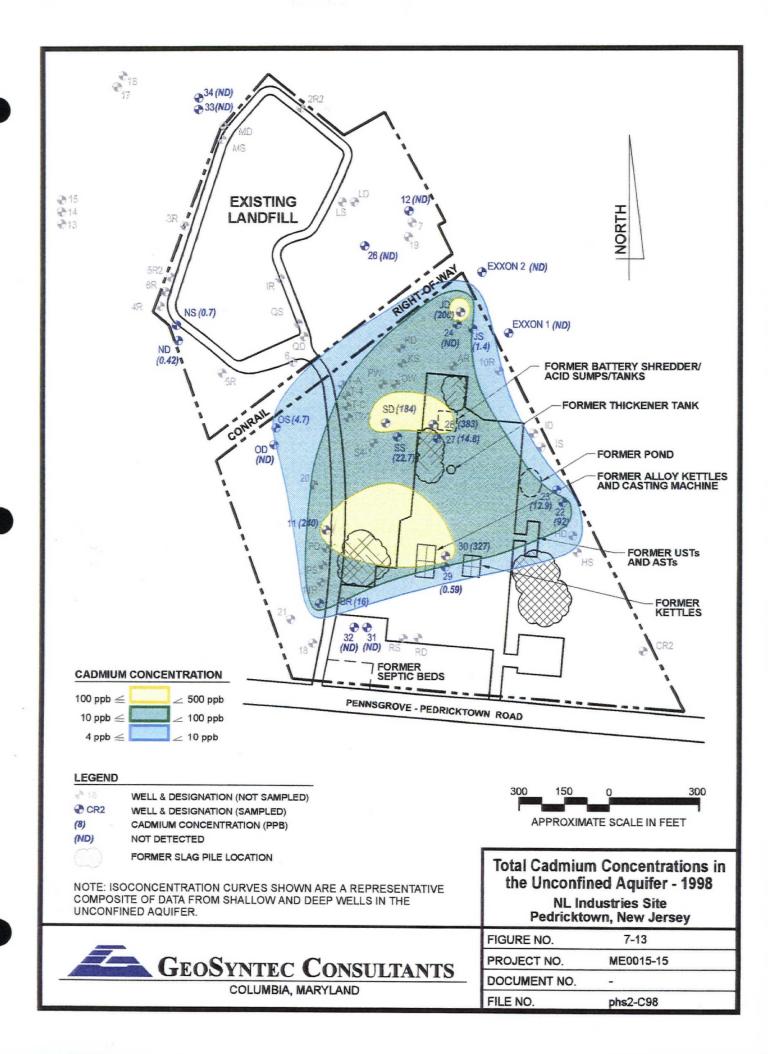

THE EXTENT OF LEAD CONTAMINATION (1998) NL INDUSTRIES SUPERFUND SITE, PEDRICKTOWN, NEW JERSEY

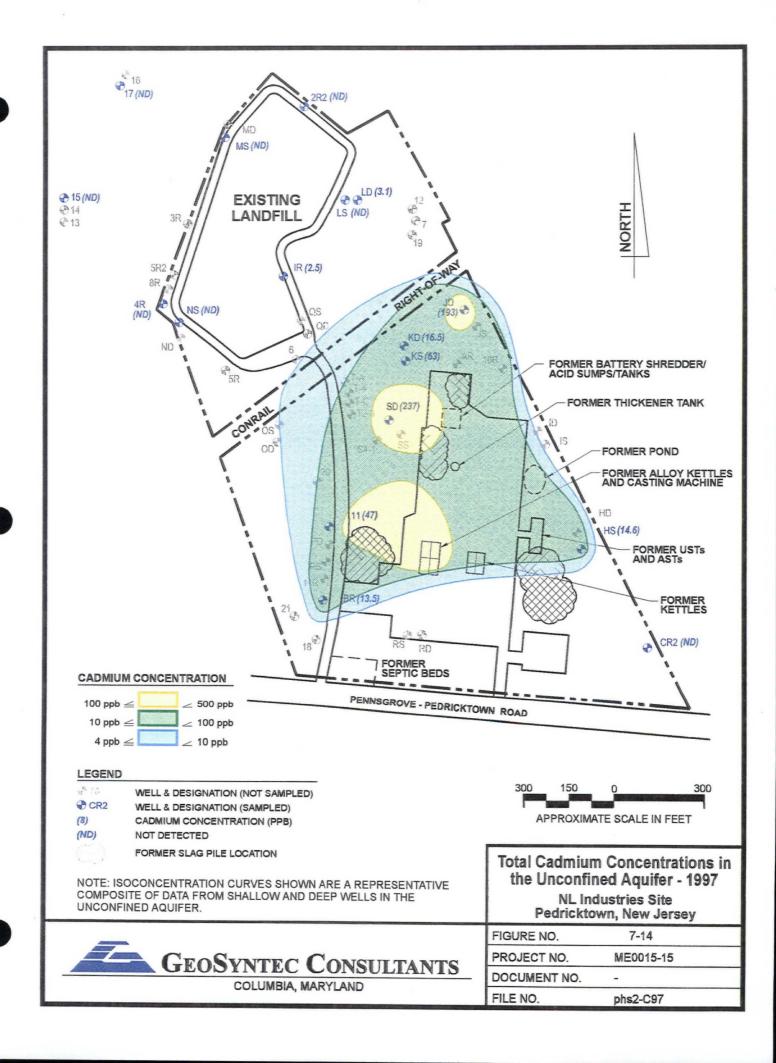
GEOSYNTEC CONSULTANTS COLUMBIA, MARYLAND

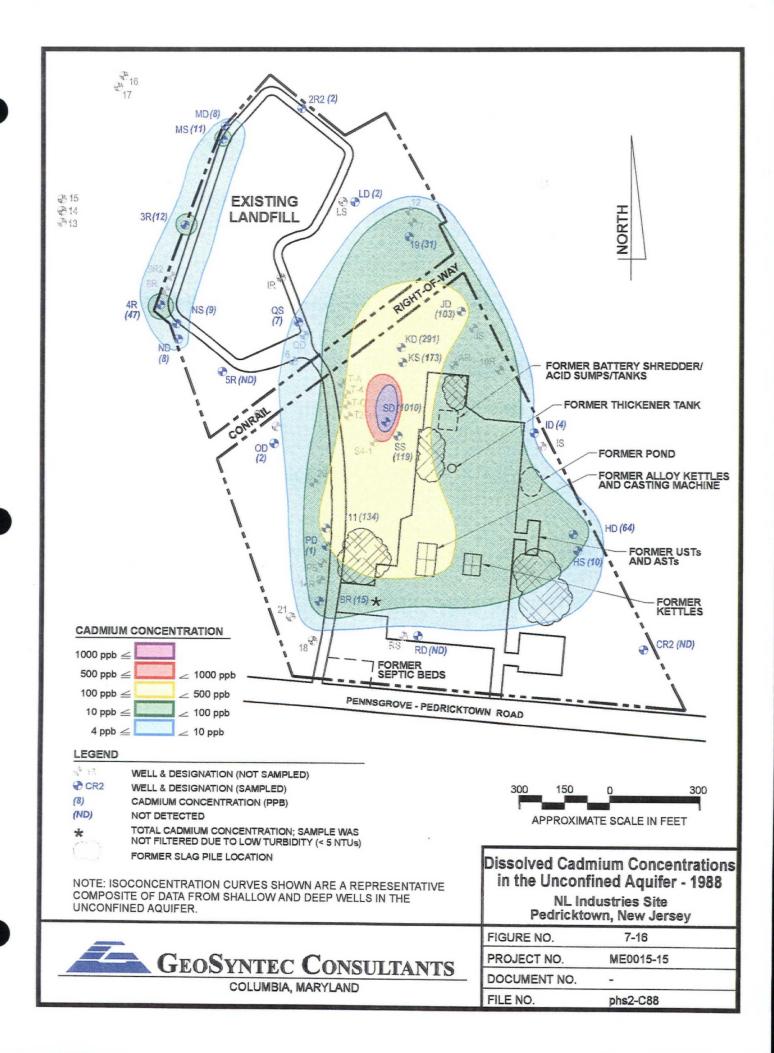
FIGURE NO. PROJECT NO. ME0015-15 DOCUMENT NO. FILE NO. phs2-sec_A2A.cdr

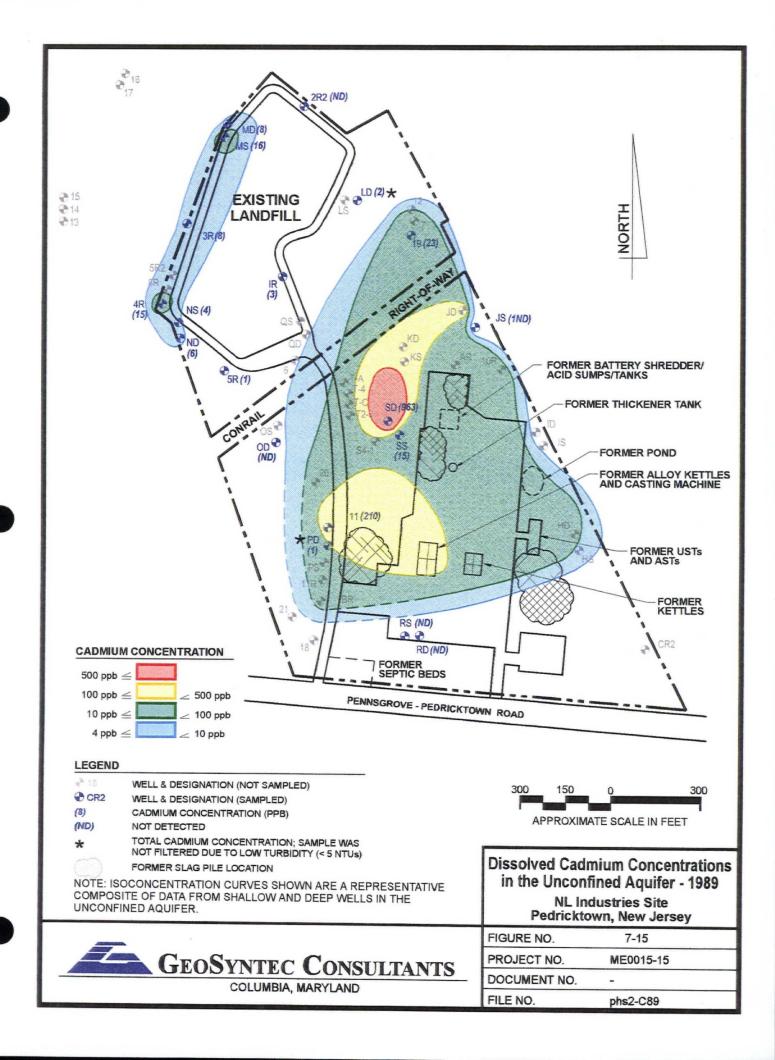
7-11

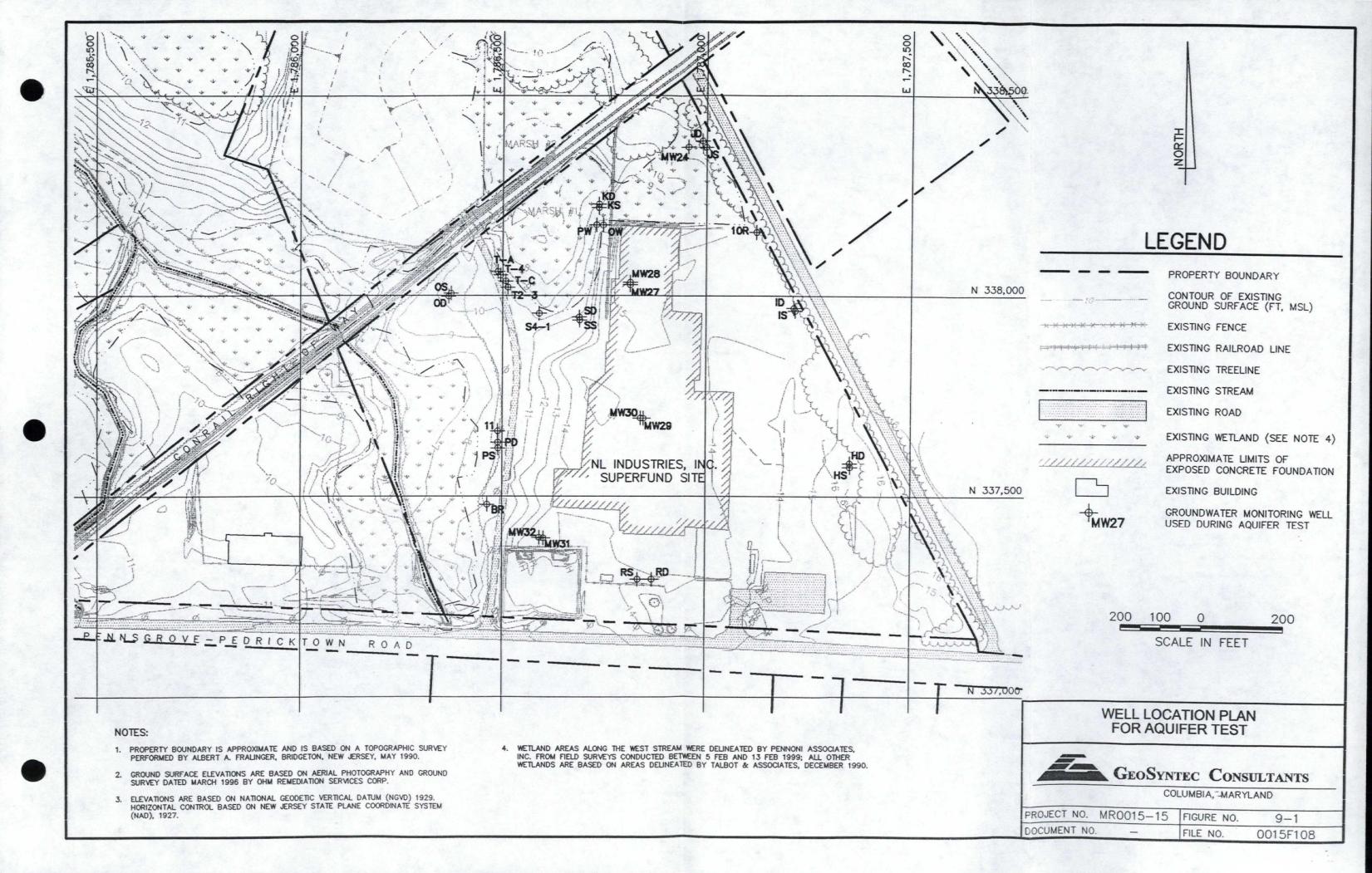
NOTE: NOT TO SCALE, VERTICAL EXAGGERATION = 20

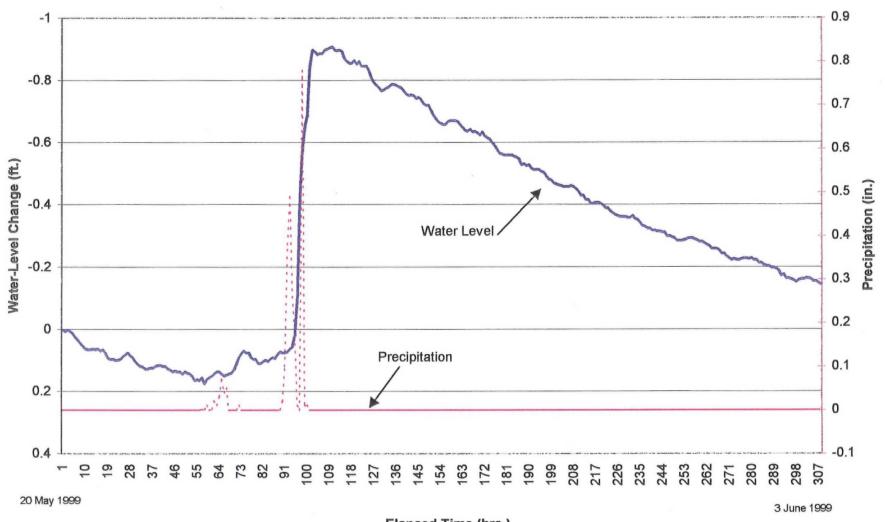

INDICATES SCREENED

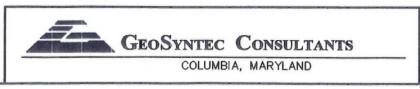

PORTION OF PIPE

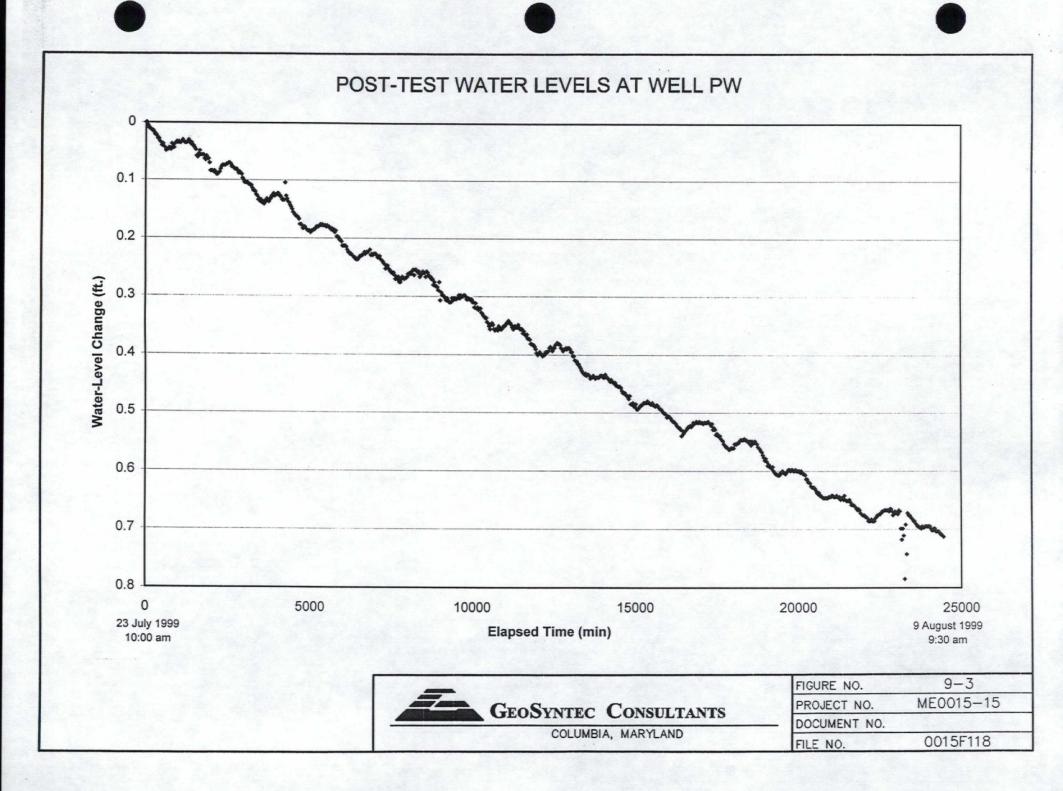

GEOSYNTEC CONSULTANTS


COLUMBIA, MARYLAND


7-12 FIGURE NO. PROJECT NO. ME0015-15 DOCUMENT NO. FILE NO. phs2-sec_A1A.cdr






PRE-TEST WATER LEVEL CHANGES AT WELL OW

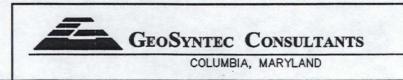
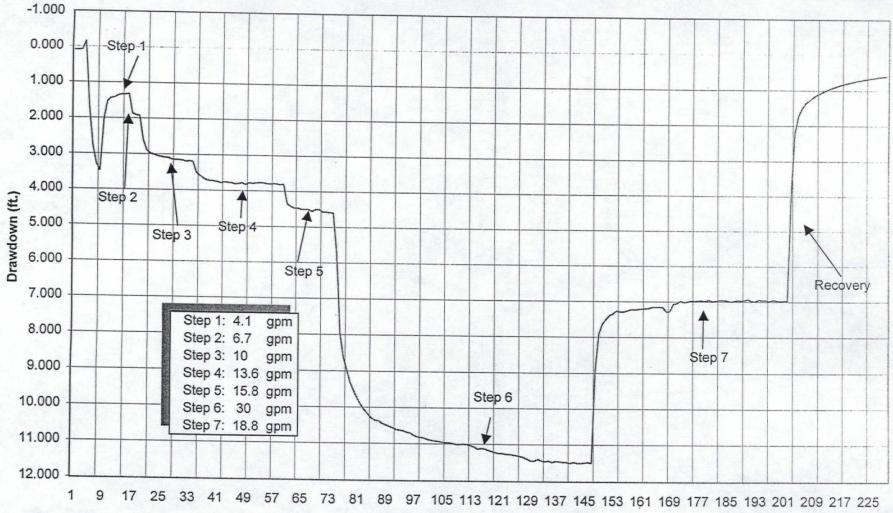
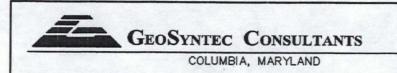

Elapsed Time (hrs.)

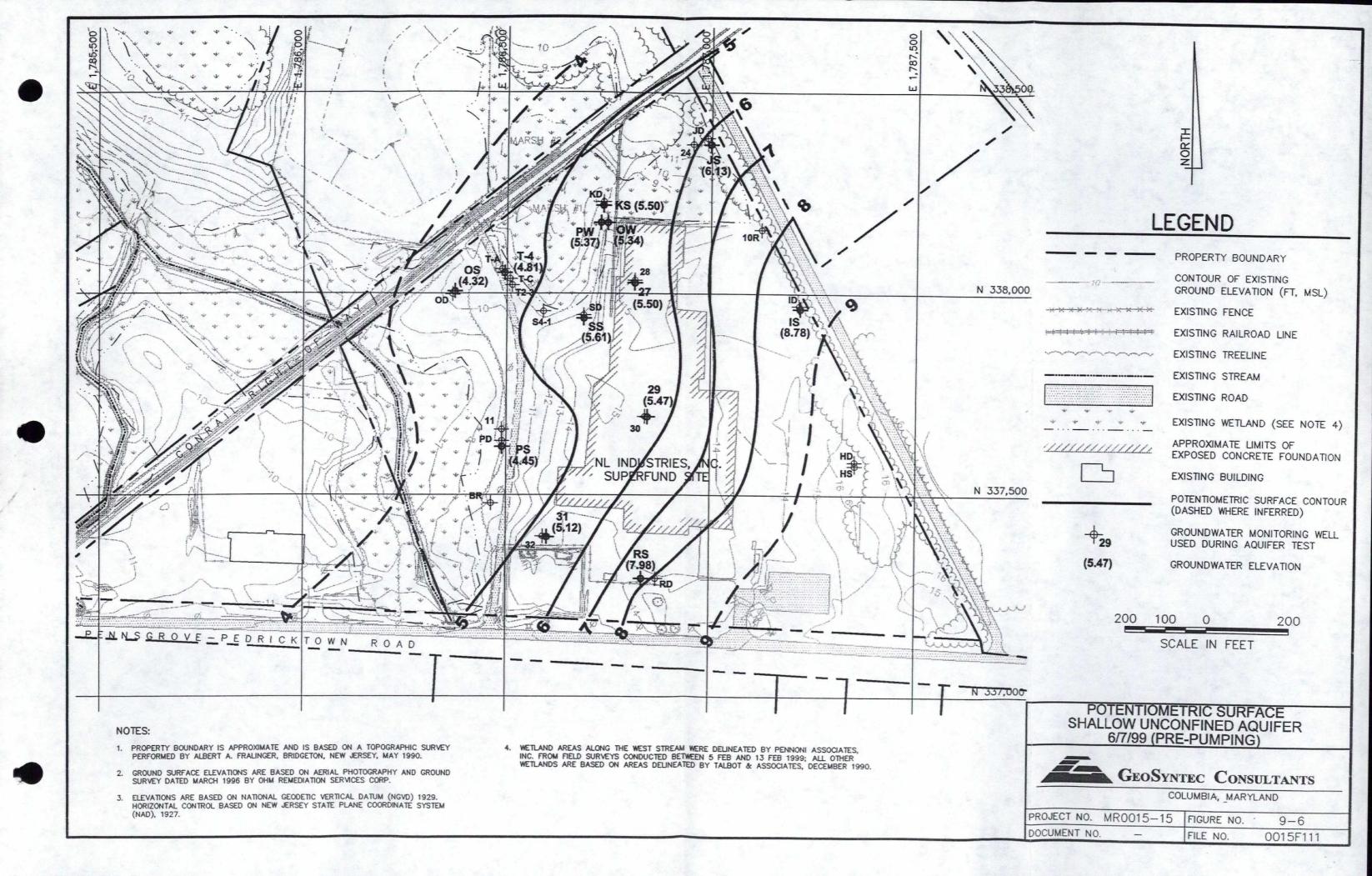
FIGURE NO.	9-2	
PROJECT NO.	ME0015-15	
DOCUMENT NO.		
FILE NO.	0015F118	

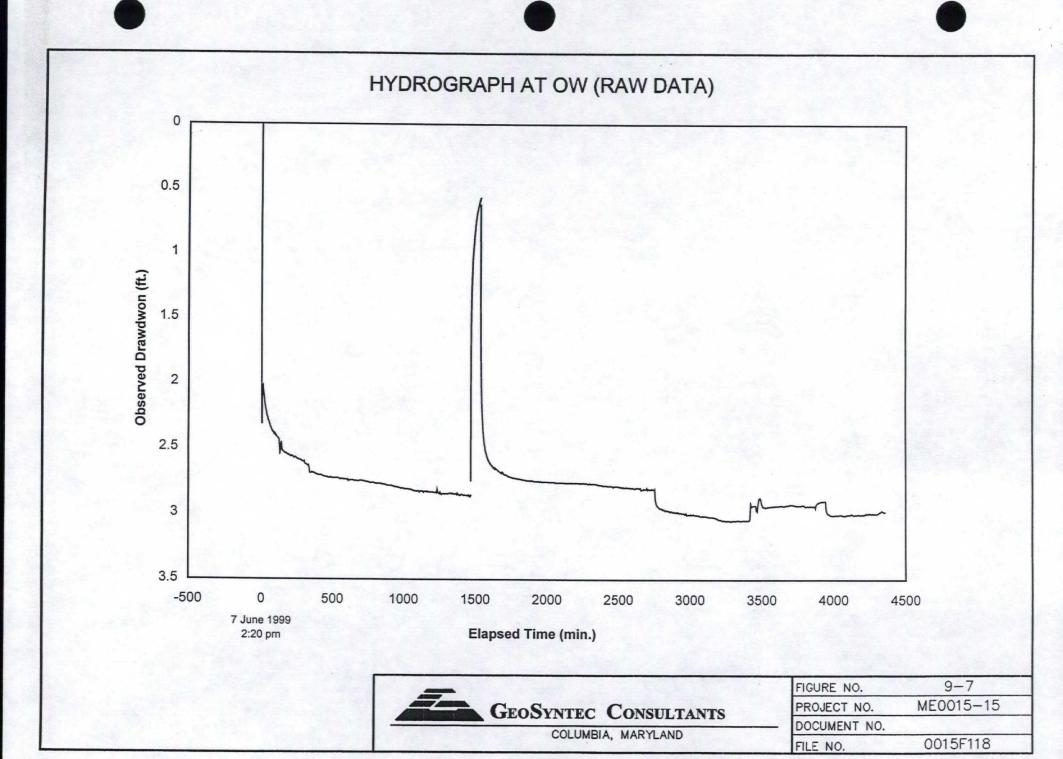


POST-TEST WATER LEVELS AT WELL PW (PARTIAL) 0.02 0.04 Water-Level Change (ft.) 0.06 0.08 0.1 0.12 0.14 0 500 1000 1500 2000 2500 3000 3500 4000 4500 23 July 1999 26 July 1999 Elapsed Time (min) 10:00 am 10:00 am


FIGURE NO.	9-4
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

STEP-TEST HYDROGRAPH AT WELL PW




2 June 1999 11:28 am

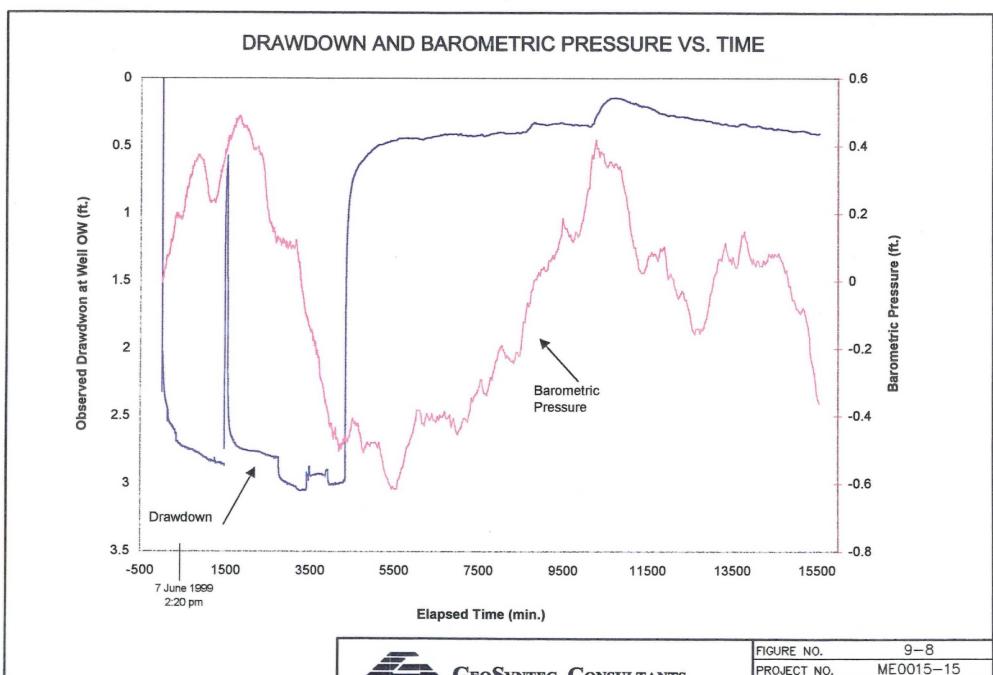
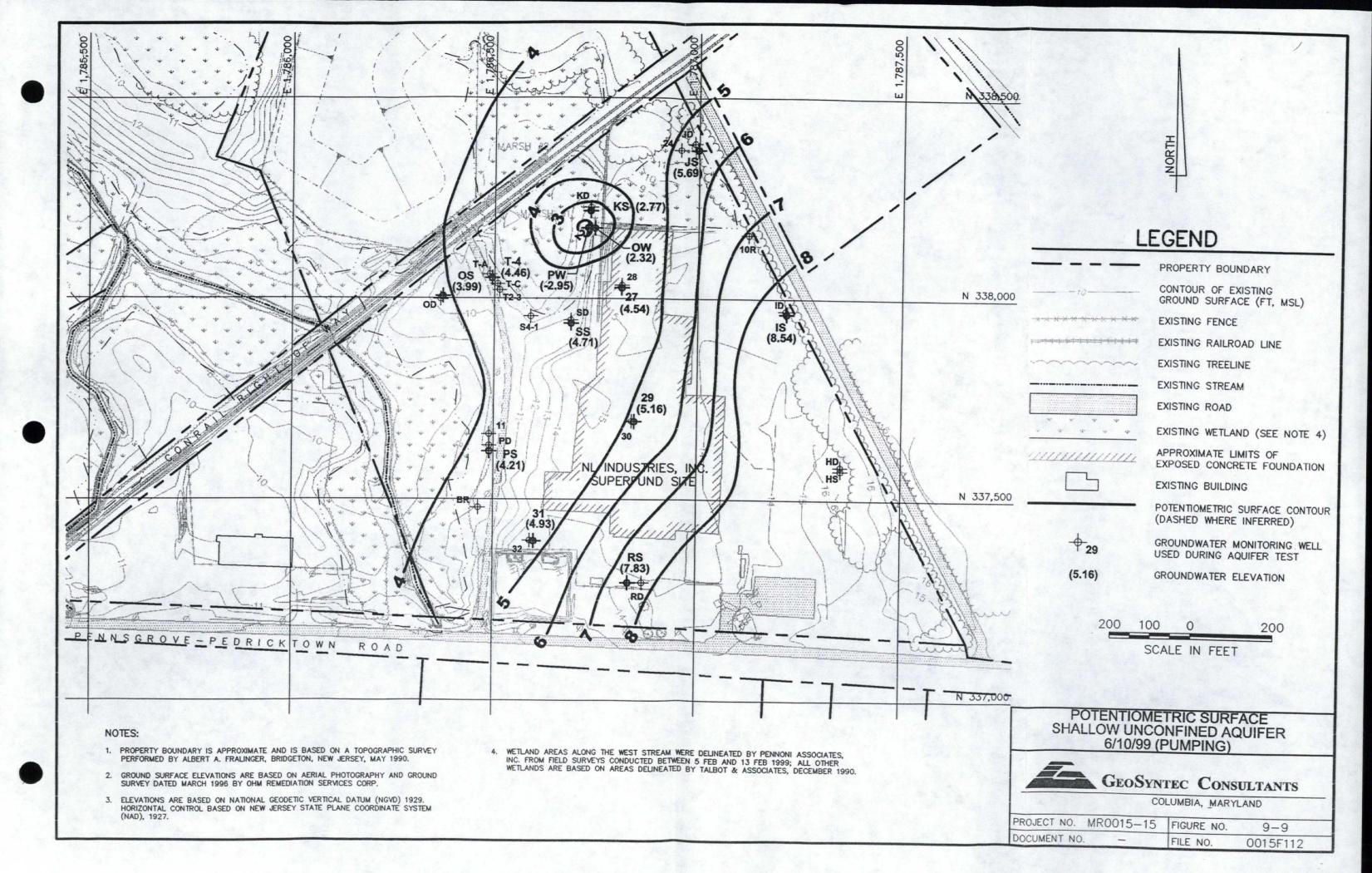
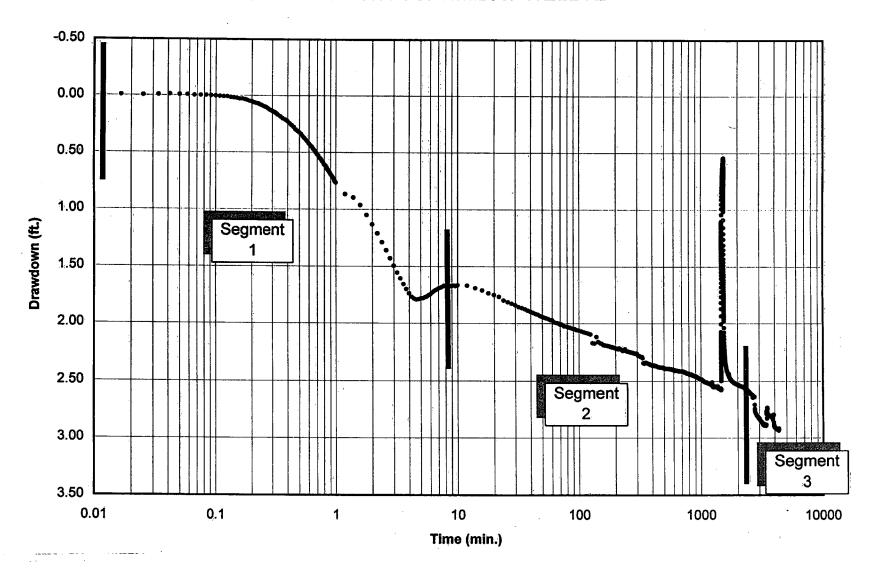
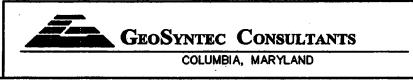

Elapsed Time (min.)

FIGURE NO.	9-5
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118







0015F118

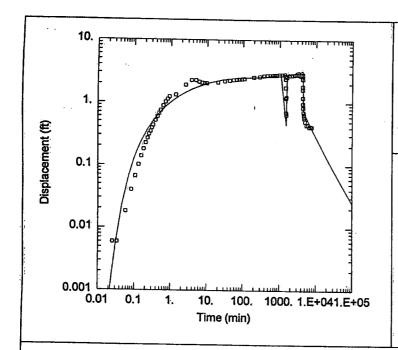

DRAWDOWN VS. TIME AT WELL KD

FIGURE NO.	9–10
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

NEWMAN ANALYSIS AT WELL OW

WELL TEST ANALYSIS

Data Set: J:\WPWORK\DUANE\NL\Pumping Test\OW-4.AQT
Date: 01/03/00 Time: 16:38:21

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

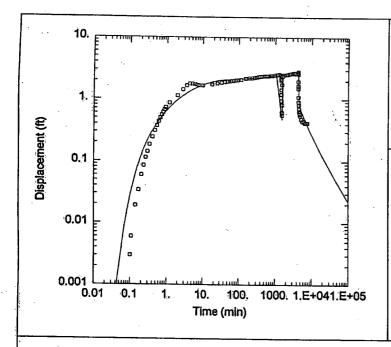
T = 3828.6 gal/day/ftS = 0.0005025

Sy = 0.04692

B = 0.004301

AQUIFER DATA

Saturated Thickness: 23. ft


WELL DATA

	Pumping Wells			Observation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
PW	0	0	□ OW	Ö	16.75

FIGURE NO.	9-11
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

NEWMAN ANALYSIS AT WELL KD

WELL TEST ANALYSIS

Data Set: J:\WPWORK\DUANE\NL\Pumping Test\KD-4.AQT
Date: 01/04/00 Time: 10:18:00

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Neuman</u>

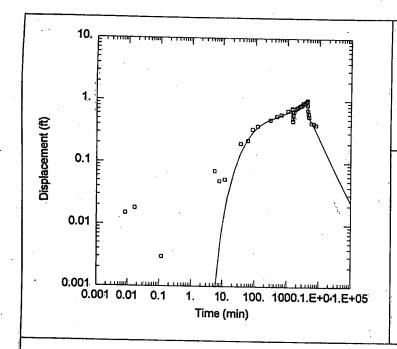
 $T = \frac{4269.3}{0.0002404}$ gal/day/ft $S = \frac{0.0002404}{0.0002404}$

Sy = 0.01

 $B = \overline{0.01}325$

AQUIFER DATA

Saturated Thickness: 23.5 ft


WELL DATA

TVI II N	Pumping Wells			Observation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
PW 1	0	0	□ KD	ò	36
l .					

FIGURE NO.	9-12
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

NEWMAN ANALYSIS AT WELL MW-28

WELL TEST ANALYSIS

Data Set: J:\WPWORK\DUANE\NL\Pumping Test\28-4.AQT Date: 01/04/00 Time: 10:17:38

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Neuman</u>

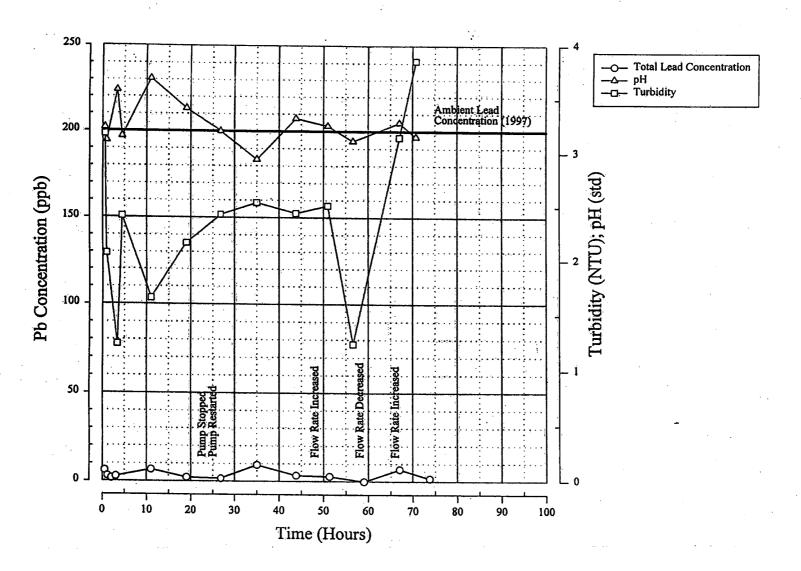
T = 4190.1 gal/day/ftS = 0.001601

Sy = 0.0229

 $\beta = 0.2702$

AQUIFER DATA

Saturated Thickness: 18. ft


WELL DATA

	Well Name	Pamping wens			Observation Wells	
	PW 1	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
	PAAI	0	0	a MW-28	Ô	159
i						

FIGURE NO.	9-13
PROJECT NO.	ME0015-15
DOCUMENT NO.	•
FILE NO.	0015F118

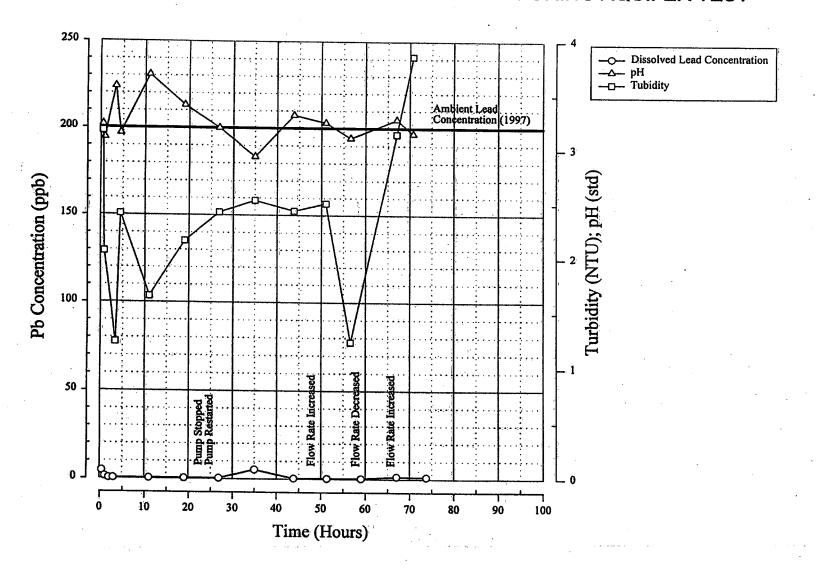
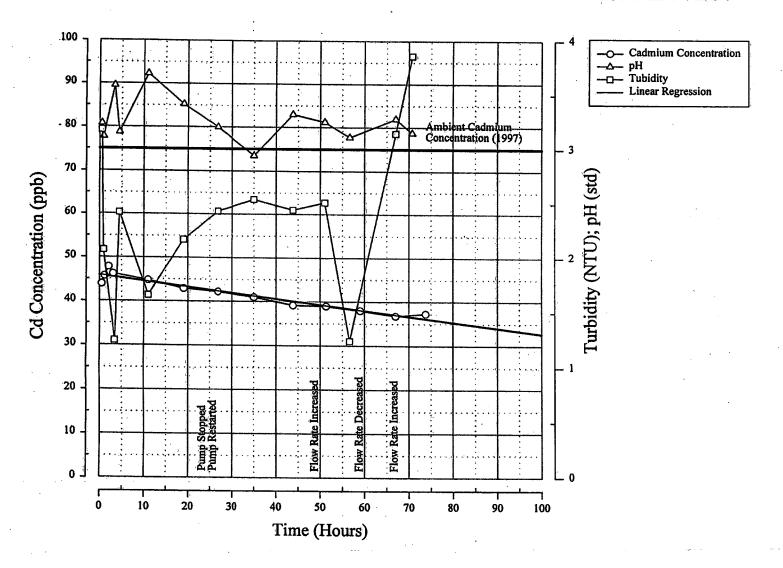

TOTAL LEAD MEASURED IN EFFLUENT DURING AQUIFER TEST

FIGURE NO.	9-14
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118


DISSOLVED LEAD MEASURED IN EFFLUENT DURING AQUIFER TEST

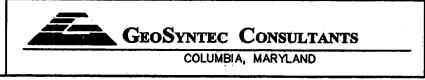


FIGURE NO.	9-15
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

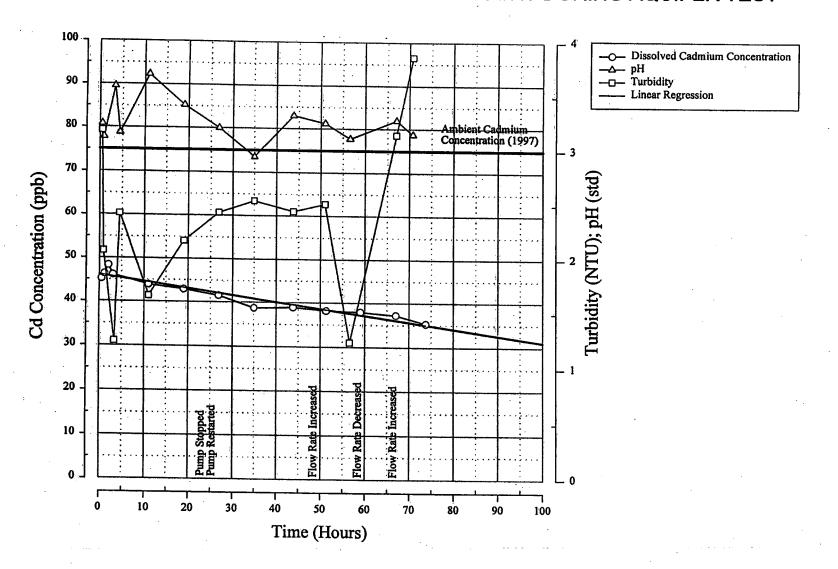

TOTAL CADMIUM MEASURED IN EFFLUENT DURING AQUIFER TEST

FIGURE NO.	9-16
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

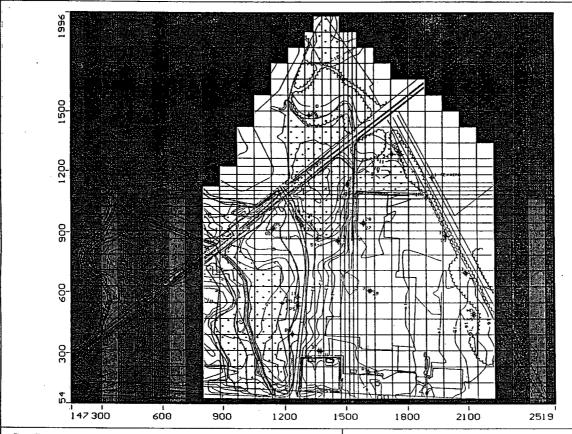
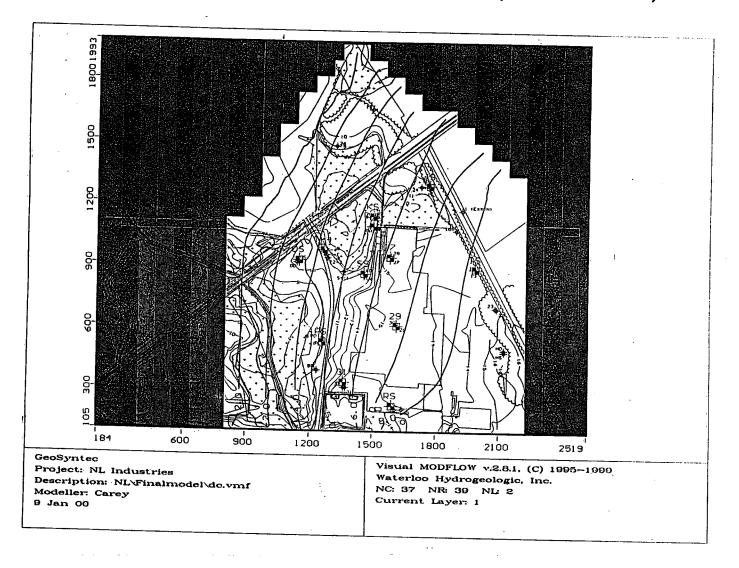

DISSOLVED CADMIUM MEASURED IN EFFLUENT DURING AQUIFER TEST

FIGURE NO.	9-17
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

MODEL GRID


GeoSyntec
Project: NL Industries
Description: NL\Finalmodel\dc,vmf
Modeller: Carey
19 Jan 00

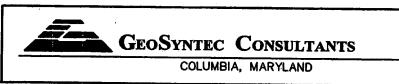

Visual MODFLOW v.2.8.1, (C) 1995-1999 Waterloo Hydrogeologic, Inc. NC: 37 NR: 39 NL: 2 Current Layer: 1

FIGURE NO.	10–1
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

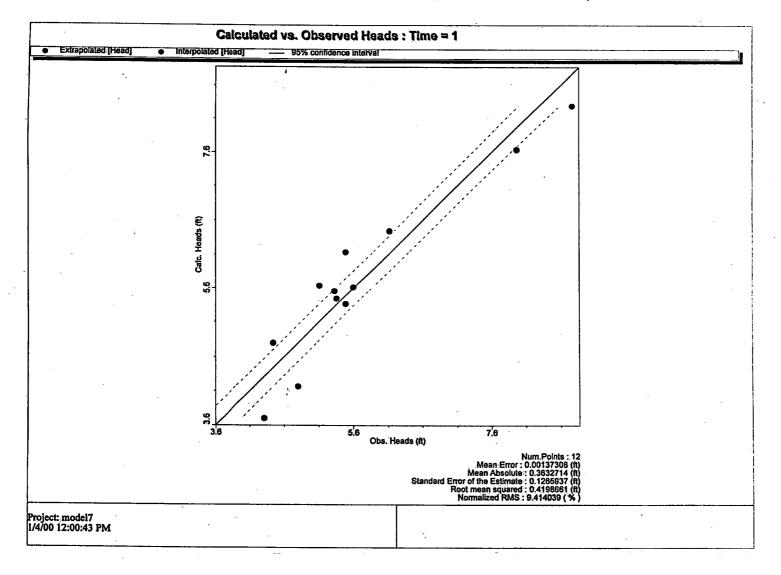
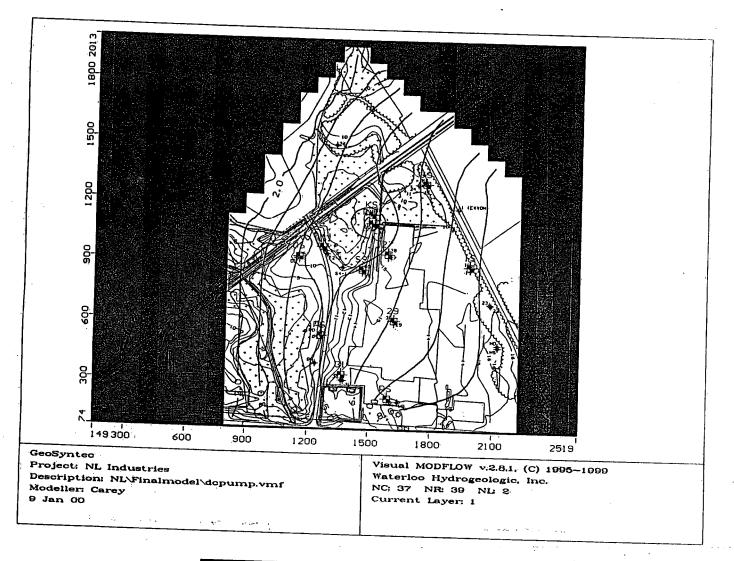

MODFLOW - SIMULATED WATER TABLE (NON-PUMPING)

FIGURE NO.	10-2
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118


CALIBRATION GRAPH (NON-PUMPING)

GEOSYNTEC	Consultants	
 COLUMB	A, MARYLAND	

FIGURE NO.	10-3
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

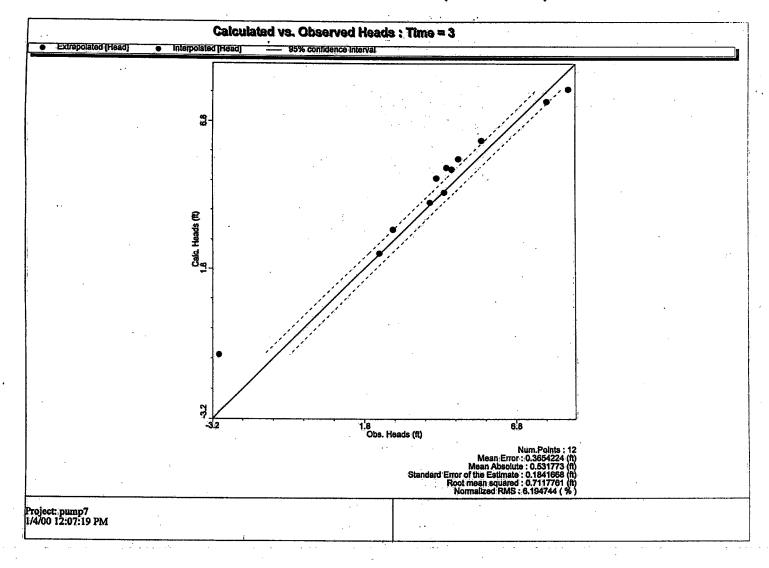
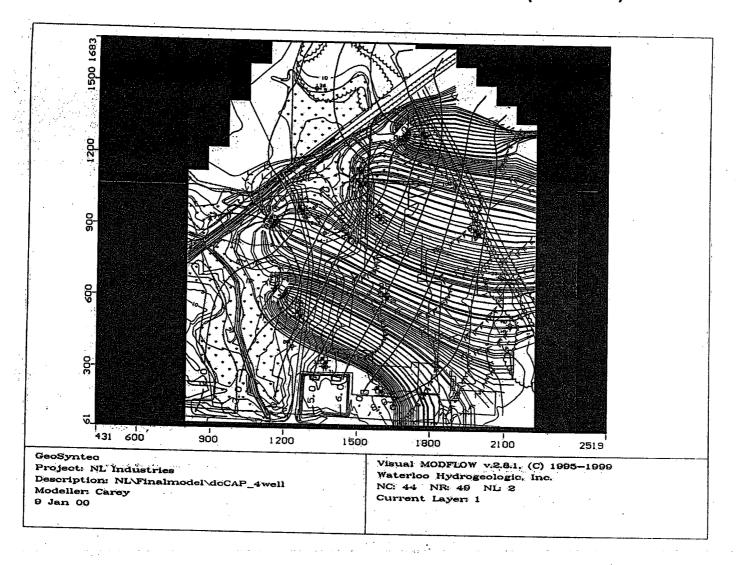

MODFLOW - SIMULATED WATER TABLE (PUMPING)

FIGURE NO.	10-4
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118


CALIBRATION GRAPH (PUMPING)

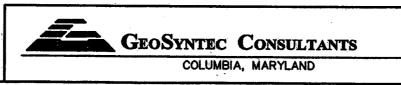
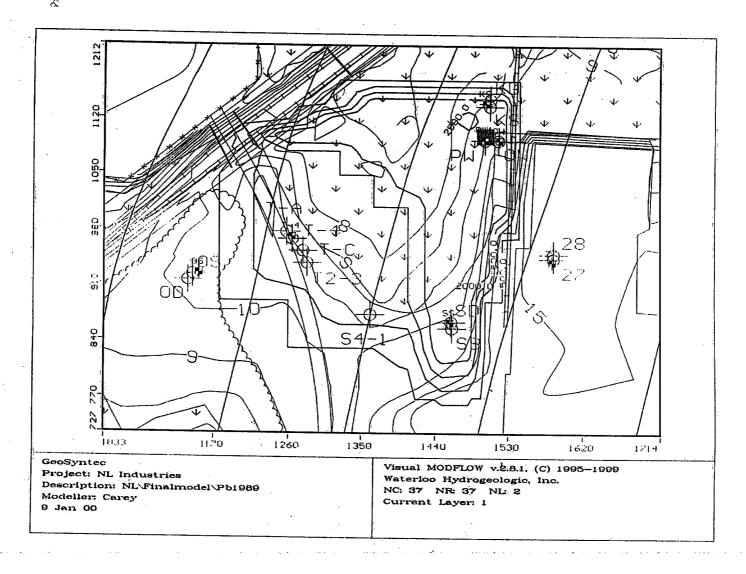


FIGURE NO.	10-5
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118


FIVE-YEAR CAPTURE ZONE SIMULATION (4 WELLS)

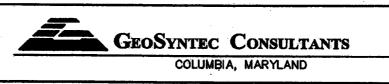
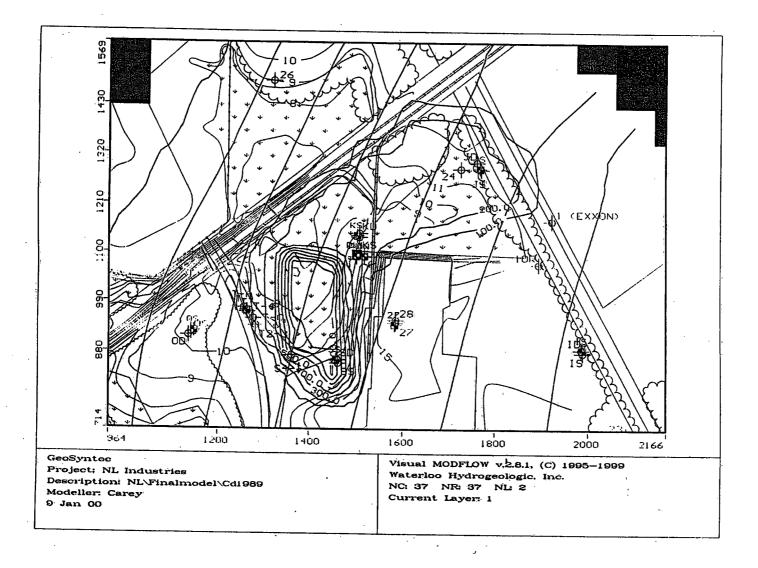


FIGURE NO.	10-6
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118


SIMULATED LEAD CONCENTRATION IN 1989

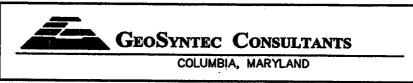
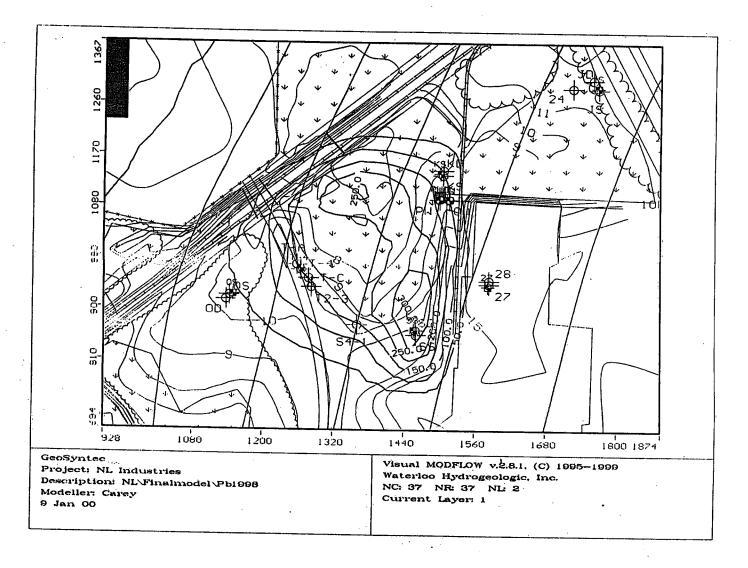


FIGURE NO.	12-1
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118


SIMULATED CADMIUM CONCENTRATION IN 1989

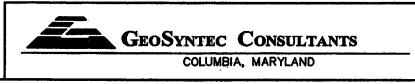


FIGURE NO.	12-2
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

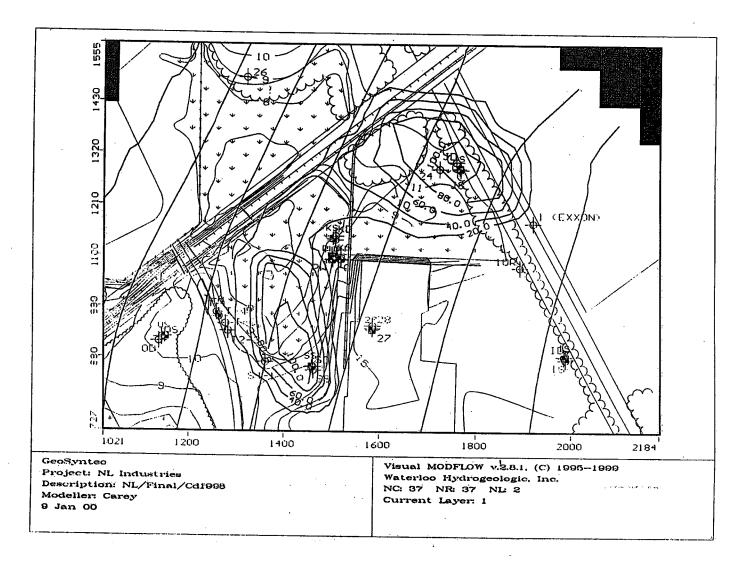
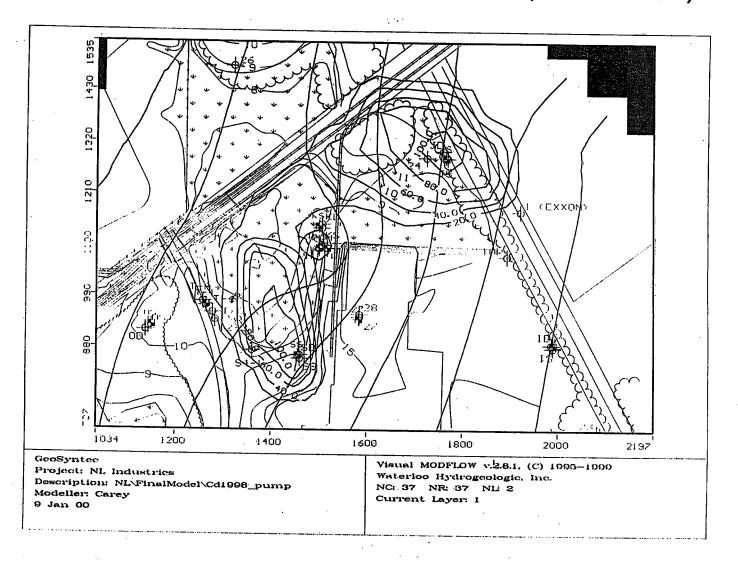
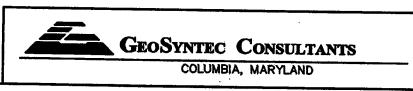

SIMULATED LEAD CONCENTRATION IN 1998

FIGURE NO.	12-3
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118


SIMULATED CADMIUM CONCENTRATION IN 1998



GEOSYNTEC	Consultants
 COLUMBI	A, MARYLAND

IGURE NO.	12-4
PROJECT NO.	ME0015-15
OCUMENT NO.	
ILE NO.	0015F118

SIMULATED CADMIUM CONCENTRATION IN 1998 (WITH PUMPING)

FIGURE NO.	12-5
PROJECT NO.	ME0015-15
DOCUMENT NO.	
FILE NO.	0015F118

APPENDIX A

LITHOLOGIC LOGS

LITHOLOGIC LOG

				Elinocodic coo
Site Name:	NL Industrie	s Inc. Superf	fund Site	Boring Number: 22
Location:	Location: Pedricktown, New Jersey			Drilling Firm: Hardin-Huber, Inc.
				Type of Drill: Mobil B-61
Start Date:	17-Jul-98			Driller: J. Corron
Completion Date:	20-Jul-98			Geologist: P. Botek
	15 ft above r	nsl (est.)		Depth to Groundwater Wile Drilling: 8 ft bgs
Depth of Boring:	16 ft bgs			
Western Break - Sec	4.028 10.11.1			W. W
Drilling Methods:	4.25" ID Hol	iow Stem At	igers	Well Installed: X
			-i	Abandoned:
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	(Lithologic description based on examination of split-spoon samples obtained from corresponding well 23)
ï5 #	0_		1	
<u>"</u>	,]			(0-8" Light gray to brown SILT Loam, highly organic).
13	2			Light gray to brown SILTY SAND (SM).
12_	3_			
11_	4_	i		
10_	5_			Pale gray to orange brown SILTY SAND (SM) at 5 ft bgs.
9_	6_			
8	7_			Dark gray SILTY SAND (SM), silt increasing with depth, some medium sand grains.
' -	8_			Light gray SILTY CLAY (CL), very stiff.
6_	. 9-			Light gray and orange brown SILTY CLAY (CL), mottled, stiff - very stiff.
5	10_			
<u></u> 4	"-			
3-	12			
² 1	13_ 14			
;	15			
-1	16			Light brown to orange brown SAND (SM), medium grain, some coarse grains, some
				silt.
4	-[END OF DODDIG AT 14 FT DGG
-	-		·	- END OF BORING AT 16 FT BGS -
4				
1	1			
1	1			
7	1			
]				
]			
]]			
]]	1		
	71	1		

LITHOLOGIC LOG

Site Name:	NL Industries Inc. Superfund Site	Boring Number:	23		····
Location:	Pedricktown, New Jersey	Drilling Firm:	Hardin-Huber, Inc	c.	
		Type of Drill:	Mobil B-61		•
Start Date:	17-Jul-98	Driller:	J. Corron		
Completion Date:	17-Jul-98	Geologist:	P. Botek		
Ground Elevation:		Depth to Groundwater	Wile Drilling: 8 f	ì bgs	
Depth of Boring:	34 ft bgs			**	
Drilling Methods:	4.25" ID Hollow Stem Augers with continuous split-spoon sampling		Well Installed:	X	. , .

Elevation (ft above msl)	Depth (ft bgs)	SPT Interval	SPT (Blows/6")	Lithologic Description
		III(C) VAI	(Diows/o)	
15 <u>.#</u>	0_	0-2	2,2,1,2	(0-8" Light gray to brown SILT Loam, highly organic).
14 13	¹ 2	1	2,2,1,4	Light gray to brown SILTY SAND (SM).
13	² 3 :	2-4	4,5,6,11	English gray to shown Start and to (SMI).
	4			
10	.5	4-6	5,7,7,12	Pale gray to orange brown SILTY SAND (SM) at 5 ft bgs.
,_]	6]		ĺ	
8]	7	6-8	6,7,9,11	Dark gray SILTY SAND (SM), silt increasing with depth, some medium sand grains.
7_	8_			Light gray SILTY CLAY (CL), very stiff.
6_	۶_	8 - 10	6,8,8,10	Light gray and orange brown SILTY CLAY (CL), mottled, stiff - very stiff.
5_	10_			
4-	11_	10 - 12	4,4,5,8	
3-	12_	12 - 14	3,4,6,8	
2-	13	12-14	3,4,0,6	
1 -	14_ 15	14 - 16	6,14,15,21	
, d	16		.,.,.,.	Light brown to orange brown SAND (SM), medium grain, some coarse grains, some
-2	17	16 - 18	5,17,13,21	silt, wet
.3]	18			
-4]	19]	18 - 20	8,16,27,26	Pale white to yellow brown SAND (SM), medium to coarse grain, few fines.
-5_	20_			
-6	21	20 - 22	7,15,12,12	Pale gray SAND (SM), medium to coarse grain, some pink grains, few silt.
-7_	22	22 - 24	7,9,18,23	
-9	23 24		1,7,10,25	Gray and light brown CLAY (CL), mottled, stiff.
-10	25	24 - 26	7,12,12,20	Pale gray SAND (SM), medium to coarse grain, some silt, some well rounded
-11_	26			gravel.
-12	27	26 - 28		Pale gray SAND (SW - SM), coarse, some well rounded gravel, some fines. Pale
-13]	28			gray to orange brown SILTY SAND (SM) from 27.3 to 28 ft bgs.
-14]	29	28 - 30		Pale white to gray SAND (SM), fine to medium grain, some gravel, fining with
-15	30	}		depth. Pale gray and yellow brown SILTY SAND (SM) from 29 to 30 ft bgs.
-16	31	30 - 32		Light brown SILTY SAND (SM).
-17	32			

-18_ -19	33 <u></u>	32 - 34	7,10,14,18	Light brown, red, and gray CLAY (CL), mottled, stiff to very stiff.	
				- END OF BORING AT 34 FT BGS -	٦

LITHOLOGIC LOG

Page 1 of 3

	Page					
Site Name:				Boring Number: 24		
Location:	Pedricktown, New Jersey		у	Drilling Firm: Hardin-Huber, Inc.		
	• • • • •			Type of Drill: Mobil B-80 (ATV)		
Start Date:	9-Jul-98			Driller: J. Corron		
Completion Date:	16-Jul-98			Geologist: D. Scotti		
Ground Elevation:	11 ft above	mial (adt)		Produce Constitute Mill Print Co.		
Depth of Boring:	73 ft bgs	iiisi (ESL.)		Depth to Groundwater Wile Drilling: 6 ft bgs		
Deptil of Dorning.	75 K 0gs	·	·			
Drilling Methods:	Mud Rotary	(12" bit)	,	Well Installed: X		
	w/ continuo		n sampling	Abandoned:		
Elevation	Depth	SPT	SPT	Lithologic Description		
(ft above msl)	(ft bgs)	Interval	(Blows/6")			
11_#						
10]	0-2	6,7,7,7	(0-6" Topsoil - Strong brown with roots, highly organic).		
9	2			Strong brown to yellowish brown SAND (SM), very fine grain, loose, dry.		
8	3_	2-4	8,11,14,16	Strong brown SAND (SM), very fine to fine grain, loose, few gravel, dry.		
7_	4_		1			
6_	5_	4-6	8,20, 35, 25	Strong brown SAND and SILT (SM), fine to very coarse quartz grains, few gravel,		
5_	6_			many dark grains, loose, wet. [Difficult drilling through gravel].		
4	7_	6-8	7,9,18,21	One-inch thick layer of gravel at 6 ft bgs. [Difficult drilling through gravel].		
3	8_	8 - 10	12 15 10 20	Light gray CLAY (CL) interbedded with pink to yellowish CLAYED SAND (SC).		
², ¬	9_	8-10	12,13,18,20	Clays are dense, thick, very stiff, and contain iron oxide staining. Sands are fine to		
1 <u>-</u> 0 _	10_ 11	10 - 12	9,10,15,14	coarse grain, containing some dark fines and few pink grains. Few gravel present at 13 ft bgs.		
v_ -1_	12		,,,,,,,,,,,	. J 1 053.		
.2	13	12 - 14	4,7,10,12			
-3	14]		ĺ			
4_	15]	14 - 16	7,10,13,13			
-5_	16_			·		
- -	17_	16 - 18	4,6,11,10	•		
-7-	¹⁸	18 - 20	15,6,6,6			
·5-	19 20	10 - 20	13,0,0,0			
-10	21	20 - 22	3,6,5,5			
	22			!		
-12	23	22 - 24	NR			
-13	.24		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
-14	25_	24 - 26	4,7,11,15	White to light gray SAND and GRAVEL (SW), fine to coarse grain sands, well		
-15	26	26.22		sorted, few fines, interbedded with CLAY (CL), stiff, dense, iron-oxide stained.		
-16	27	26 - 28	7,10,11,11	Red, white, and yellowish-brown CLAY (CL), mottled, stiff, hard.		
-17 -18	28	28 - 30	13,15,18,20			
-19	30	-0-50		SAND and GRAVEL (SW), 0.5-inch diameter gravels.		
*17	30.		<u></u> _ <u></u> <u></u> <u></u>	and Great E. (Sw.), U.S-inch diameter graveis.		

Page 2 of 3

Site Name:	NL Industrie			Boring Number: 24
Location:	Pedricktown	, New Jersey	<u>′</u>	Drilling Firm: Hardin-Huber, Inc.
				Type of Drill: Mobil B-80 (ATV)
Start Date:	9-Jul-98	- · · · · · ·		Driller: J. Corron
Completion Date:	16-Jul-98			Geologist: D. Scotti
C	11 A .L	14.45		D 11 - C 1 - WH. D 11 - CO.
Ground Elevation:	11 ft above n	nsi (est.)		Depth to Groundwater Wile Drilling: 6 ft bgs
Depth of Boring:	73 ft bgs			
Drilling Methods:	Mud Rotary	(12" bit)		Well Installed: X
	w/ continuou		n sampling	Abandoned:
	***************************************	L-	• • • • • • • • • • • • • • • • • • •	
	Ī			
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	
-19 #	# 30			
-20_] 31]	30 - 32	6,12,18,20	Red, white, and yellowish-brown CLAY (CL), mottled, stiff, hard.
-21_	32			
-22	33	32 - 34	4,7,10,10	Red, white, and yellowish-brown CLAY (CL), mottled, stiff, hard, becoming
-23_	34_		<u> </u>	predominantly red and white with depth.
-24	35_	34 - 46	5,9,13,15	Red, white, and yellowish-brown CLAY (CL), mottled, stiff, hard, becoming
-25	36_	2. 30	20,4,0	predominantly red with depth.
-26_	37	36 - 38	7,8,14,18	
-27	38_	38 - 40	6,11,26,24	
-28° -29	39		*,,,,,,,,,,	
-30	41	40 - 42	6,10,16,21	Red and light gray, and gray and yellowish-brown CLAY (CL), mottled, stiff, hard,
-3(42			grading toward a SILT(ML) present at 42.5 ft bgs.
-32	[43	42 - 44	8,29,33,30	Gray, yellowish-brown, and brown SILT (ML), some dark grain laminations at 44 -
-33	44]			46 ft bgs.
-34_	45_	44 - 46	20,24,29,40	
-35	46_	15 46		
-36	47_	46 - 48		Red SILT (ML) to 46.1 ft bgs grading to a reddish-brown SILTY SAND (SM) to
-37 -38	48_	48 - 50		46.3 ft bgs grading to a light gray SAND (SM), fine to carse grain. Brown SAND and GRAVEL (SW - SM), coarse grain sands, appreciable fines.
-38 -39	49 50	10-33	ب عبد بدیوع۳ودع	Diowit SAND and Otta VEE (5 w - 5141), coaise grain sailus, appreciable filies.
	51	50 - 52	16,21,21,30	Reddish-brown to brown SAND and GRAVEL (SW - SM), coarse grain sands,
41]	52	"		appresicable fines, fines changing color to pale yellow and light gray at 52 ft bgs.
-12]	53	52 - 54	25,34,38,40	
-43	54			
44.4	55_	54 - 56		Light gray and yellowish-brown CLAY (CL), mottled, interbedded with SAND and
⁻⁴⁵	56_			GRAVEL (SW), coarse grain sands to 55 ft bgs, grading to light gray SILT (ML)
-46_	57	56 - 58	13,13,11,18	characterized by dark grain laminae, becoming clayey at 57.5 ft bgs.
-47 - -	58_	50 60	11 25 20 42	
-48	59_	58 - 60	11,23,39,43	Light gray SILT (ML) interbedded with CLAY (CL), 2-inch thick seams.
-49				

Page 3 of 3

ſ i				
Site Name:	-	es Inc. Superfi		Boring Number: 24
Location:	Pedricktown	n, New Jersey	/	Drilling Firm: Hardin-Huber, Inc.
	-			Type of Drill: Mobil B-80 (ATV)
Start Date:				Driller: J. Corron
Completion Date:	16-Jul-98	·	<u> </u>	Geologist: D. Scotti
Ground Elevation:		nsl (est.)		Depth to Groundwater Wile Drilling: 6 ft bgs
Depth of Boring:	73 ft bgs			·
Tuttle - Mathade	had Datame			. What was a
Drilling Methods:		us split-spoon		Well Installed: X
	W/ COntinuou	S-Spiit-spoon	Samping	Abandoned:
		1		
Elevation	Donth	SpT	CDT	T Pakalania Decembria
Elevation (ft above msl)	Depth (ft bgs)	SPT Interval	SPT (Blows/6")	Lithologic Description
		Interva-	(Diumau ,	
-49 <u>#</u>	7 7	60 - 62	0121316	CT TO O O Secretarial and the CT ANY (CT S 2) inch shigh pages
-50 <u> </u>	61	00-02	9,12,13,16	Light gray SILT (ML) interbedded with CLAY (CL), 2-inch thick seams,
-51 -52	7 7	62 - 64	10,18,26,29	percentage of clay increasing with depth.
-52	7	02-5.	10,10,20,2,	
-53 -54	64 _	64 - 66	7,19,20,30	Gray and yellowish-brown SILT (ML) interbedded with CLAY (CL), mottled.
-54 -55	55 -	1	1	Clay and yeirowini-biowin Sight (intel) intelocuted with Cart (Car), include.
-56 _	67	66 - 68	15,13,16,25	Light gray SILTY CLAY (CL) and CLAYEY SAND (SC) to 66.5 ft bgs, grading
-57	68			to a light gray SILT (ML) and yellow-brown and gray SILTY CLAY (CL), mottled.
-58	<u> </u>	68 - 70	13,26,26,30	Pink and white GRAVEL and SAND (SW), coarse grain sands, mixed with yellow-
-39	70.]	1 1		brown and light gray CLAY (CL), mottled, stiff, and strong brown to pink SAND
-60]] "]	70 - 72	L .	(SW - SM) fine to coarse grain, containing some gravel and fines.
-61	72			
-62	73	72 - 74	50,50/5	Pink quartz SAND (SW - SM), with some gravel, and appreciable fines.
-63	74		<u></u>	
4	4 4	1 1	1	
4	1 4	1 1	1 1	- END OF BORING AT 73 FT BGS -
4	1 1	i J	1 1	(split-spoon sample to 74 ft bgs; drill only to 73 ft bgs)
7	1. 4	i	i 1	
7	, j	ı J	, ,	
]	<i>i</i> 1	ı J	<i>i</i>	
.]	<i>,</i>]	.	, ,	
]]	. 1	, ,	
1	.]		, J	
. 4	. 1	,]	.]	
· 4	. 4	. [. 1	
4	. 4	.	,	·
4	. 4	. 1		i
4	4		. 1	
1	. H		1	

Site Name:	NL Industrie	es Inc. Superf	fund Site	Boring Number: 26
li	Pedricktown			Drilling Firm: Hardin-Huber, Inc.
		<u></u>		Type of Drill: Mobil B-57 ATV
Start Date:	20-Jul-98			Driller: D. Taylor
Completion Date:	20-Jul-98			Geologist: J. Moore
-				
	10 ft above n	nsl (est.)		Depth to Groundwater Wile Drilling: 8 ft bgs
Depth of Boring:	22 ft bgs		<u> </u>	
Drilling Methods:	4.25" ID Hol	low Stem Au	gers	Well Installed: X
		 		Abandoned:
				
Elevation	Depth	SPT	SPT	Tishalosis Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	Lithologic Description
10 #	 	111111111111111111111111111111111111111	(Bionsie ,	Fine to coarse SAND
10 <u>.#</u> 9 :	1 7	1 1	1 '	I the to coase SAND
* 7	27	<i>l</i> 1	1 '	
,7]	1 1	1 !	
6]	1 .]	1 1		
5_	[5	.		Coarse SAND
4_	ل_ه ا	1 1	, !	
3	,]	1)	1	
2_				
1-4	°-		ı	SILTY SAND and CLAY
°-	10-			CAND
-1-1	<u>"</u> -∥	1	, J	coarse SAND
-2 -3	12	,	i	
<u> </u>	13_	<i>i</i>	. 1	·
-s_	15_	, J		
[4	16	,		·
-7	17	.	ľ	Fine to coarse SAND and SILT
*]	18]			
2-	19_		ľ	SILTY SAND and CLAY
-10 	20	+		P. C.
-11	21	. 1	4	Fine to coarse SAND and SILT red and white mottled CLAY at bottom of spoon
				red and white motified CLA1 at bottom of spoon
1	1			•
· I	11	1		END OF PODING AT 22 FT DCC

Site Name:	NL Industrie	s Inc. Superfi	ind Site	Boring Number: 27
	Pedricktown			Drilling Firm: Hardin-Huber, Inc.
Location.	1 Curickto Wil	, ive w sersey	 	Type of Drill: Mobil B-61
Start Date:	16-Jul-98			Driller: J. Corron
Completion Date:	16-Jul-98			Geologist: D. Scotti

Ground Elevation:	20 ft above n	nsl (est.)		Depth to Groundwater While Drilling: 8 ft bgs
Depth of Boring:	15 ft bgs			
	~			
Drilling Methods:	4.25" ID Hol	low Stem Au	igers	Well Installed: X
				Abandoned:
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	(Lithologic description based on examination of split-spoon samples obtained from corresponding well 28)
· 20_ <u>*</u>	٥			
19	1_			Concrete, rebar, and asphalt (FILL).
18_	2_			
17_	3_		Ï	Medium to dark brown SILTY SAND (SM).
16_	4_			
15	غ ا			
14_	6_			
13_	7-	!		
13_	∛ -	<u> </u>		Light brown to gray SAND (SM), with silt, fine to medium grain sands, few coarse
11_	°-			gravel and pebbles, wet.
10_	10_			graver and perforces, were
°	11_			
* <u>-</u> 7_	12_ 13			
6_	14			
	15			
_	_			- END OF BORING AT 15 FT BGS -
,	4			
_				
-				
•••	4			
=	-			•
-	-			
	-			
	1			
1	-			
7	1			•• •

Site Name: NL Industries Inc. Superfund Site Location: Pedricktown, New Jersey Start Date: 15-Jul-98 Completion Date: 16-Jul-98 Ground Elevation: 20 ft above mal (est.) Depth of Booring: 30 ft bgs Drilling Methods: 4.25° ID Hollow Stem Augers with continuous spili-apoon sampling Pedrick Stem To SPT (Blows 6°) Elevation (ft above msl) The properties of the stem of the stem Augers with continuous spili-apoon sampling Depth of Groundwater While Drilling: 8 ft bgs Well Installed: X Abandoned: Elevation (ft bgs) SPT (Blows 6°) Concrete, rebar, and asphalt (FiLL). Spr (1 above msl) Spr					
Start Date: 16-Jul-98 16-Jul-98 Depth 16-Jul-98 Depth to Groundwater While Drilling: 8 ft bgs	Site Name:	NL Industri	es Inc. Superi	fund Site	Boring Number: 28
Start Date: 16-Jul-98 Geologist; D. Scotti	Location:	Pedricktown	ı, New Jersey		Drilling Firm: Hardin-Hüber, Inc.
Start Date: 16-Jul-98 Geologist: D. Scotti					Type of Drill: Mobil B-61
Completion Date: 16-Jul-98 Geologist; D. Scotti	Start Date:	16-Jül-98			
Depth of Boring: 30 ft above msl (est.) Depth to Groundwater While Drilling: 8 ft bgs	Completion Date:	16-Jul-98			
Depth of Boring: 30 ft bgs 25° ID Hollow Stem Augers Well Installed: X Abandomed:		· · · · · · · · · · · · · · · · · · ·			
Depth of Boring: 30 ft bgs	Ground Elevation:	20 ft above	msl (est.)		Depth to Groundwater While Drilling: 8 ft has
Drilling Methods	Depth of Boring:	30 ft bgs			
### Abandoned: Pepth (ft bas) SPT (Blowsf6") SPT (Blowsf6") Lithologic Description			•		
Name	Drilling Methods:	4.25" ID Ho	llow Stem At	ugers	Well Installed: X
Concrete, rebar, and asphalt (FILL).	·	with continu	ous split-spo	on sampling	
(ft above msl) (ft bgs) Interval (Blows/6") 10				<u> </u>	
(ft above msl) (ft bgs) Interval (Blows/6") 10		I			
(ft above msl) (ft bgs) Interval (Blows/6") 10	Elevation	Depth	SPT	SPT	Lithologic Description
Concrete, rebar, and asphalt (FILL). 10				1	2. and a property of the prope
Concrete, rebar, and asphalt (FILL). 13				T T	
2 2 - 4 13,14,16,23 Medium to dark brown SILTY SAND (SM). 4 - 6 13,14,17,27 6 - 8 13,30,20,34 8 - 10 5,9,11,10 Light brown to gray SAND (SM), with silt, fine to medium grain sands, few coarse gravel and pebbles, wet. 10 10 12 6,11,14,20 11 12 - 14 8,12,15,19 12 13 14 - 16 10,10,12,14 16 15 5,5,6,9 18 - 20 3,5,6,7 18 - 20 3,5,6,7 20 - 22 7,7,7,6 Pale white SAND (SP), fine to coarse grain, some pink grains. 21 22 - 24 6,6,7,6 23 24 - 26 3,3,4,2 24 - 26 3,3,4,2 27 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled.	-	1	0.2		Concrete rehar and achialt (FILL)
17	_	1 '-	"-	İ	Constitut, reduit, and aspirant (1 IEE).
4 - 6	-	1 1	2 - 4	13.14.16.23	Medium to dark brown SILTV SAND (SM)
13	·	1 1	2 - 4	15,14,10,25	Median to day brown 3121 1 3AND (3M).
10	_	'-	4-6	13 14 17 27	
12		1 1		15,14,17,27	
10	_	<u> </u>	6-8	13 30 20 34	
10	=	':		13.30,20,34	
gravel and pebbles, wet. 10	· -	l H	8 - 10	5.9.11.10	Light brown to gray SAND (SM) with silt, fine to medium grain goods four soons
11	-	٦,		_,,,,,,,,	
12 14 8,12,15,19 14 16 10,10,12,14 16 17 16 -18 5,5,6,9 18 19 18 -20 3,5,6,7 20 21 20 -22 7,7,7,6 21 22 22 -24 6,6,7,6 22 23 22 -24 6,6,7,6 23 24 25 24 -26 3,3,4,2 24 25 26 -28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	7	1	10 - 12	6.11.14.20	Bartar and possibly, well
13		1		-,,,	
14 14 16 10,10,12,14 15 16 16 17 16 - 18 5,5,6,9 Light brown SAND (SW-SM), fine to medium grain, with appreciable silt, interbedded with gray and yellowish-brown mottled CLAY (CL) and coarser sands and gravel (2-inch to 3-inch diameter) containing some pink grains. 10 20 21 20 - 22 7,7,7,6 Pale white SAND (SP), fine to coarse grain, some pink grains. 22 23 22 - 24 6,6,7,6 24 25 25 26 - 28 3,3,4,2 24 26 3,3,4,2 26 27 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 28 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	•	7	12 - 14	8.12,15,19	•
15 14 - 16 10,10,12,14 16 17 16 - 18 5,5,6,9 18 18 - 20 3,5,6,7 20 21 20 - 22 7,7,7,6 21 22 23 24 - 26 3,3,4,2 24 25 26 27 27 28 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.		7			
Light brown SAND (SW-SM), fine to medium grain, with appreciable silt, interbedded with gray and yellowish-brown mottled CLAY (CL) and coarser sands and gravel (2-inch to 3-inch diameter) containing some pink grains. 1	5	71	14 - 16	10,10,12,14	,
17 16-18 5,5,6,9 bedded with gray and yellowish-brown mottled CLAY (CL) and coarser sands and gravel (2-inch to 3-inch diameter) containing some pink grains. 18-20 3,5,6,7 20-22 7,7,7,6 Pale white SAND (SP), fine to coarse grain, some pink grains. 21 22 24 6,6,7,6 22 24 24 26 3,3,4,2 23 24-26 3,3,4,2 24 26-28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 28 29 28-30 2,3,6,8 Red and white CLAY (CL), mottled.	7	16			Light brown SAND (SW-SM), fine to medium grain, with appreciable silt, inter-
2 18 18 - 20 3,5,6,7 gravel (2-inch to 3-inch diameter) containing some pink grains. 1 10 20 20 - 22 7,7,7,6 Pale white SAND (SP), fine to coarse grain, some pink grains. 2 22 23 22 - 24 6,6,7,6 3 24 25 24 - 26 3,3,4,2 4 25 26 27 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 2 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	3	l l	16-18	5,5,6,9	
1 19 20 3,5,6,7 20 21 20 - 22 7,7,7,6 Pale white SAND (SP), fine to coarse grain, some pink grains. 2 2 2 2 2 4 6,6,7,6 2 2 4 - 26 3,3,4,2 2 2 2 - 24 2 6 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 2 2 2 2 2 2 2 2 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled.	7	18			
21 20 - 22 7,7,7,6 Pale white SAND (SP), fine to coarse grain, some pink grains. 22 23 22 - 24 6,6,7,6 24 25 24 - 26 3,3,4,2 26 27 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	1]	11	18 - 20	3,5,6,7	
22 22 24 6,6,7,6 24 25 26 27 26 27 26 27 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	٥٦	20			
23 22 - 24 6,6,7,6 24 25 24 - 26 3,3,4,2 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	41	21	20 - 22	7,7,7,6	Pale white SAND (SP), fine to coarse grain, some pink grains.
24 24 26 3,3,4,2 25 26 27 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 28 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.		22	-	`	
25 24 - 26 3,3,4,2 26 27 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 28 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	-3	23	22 - 24	6,6,7,6	
26 27 26 - 28 3,4,6,9 Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.		24_			•
Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL), mottled. 28 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	-5_	25_	24 - 26	3,3,4,2	
mottled. 28 mottled. 29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	-	26			
29 28 - 30 2,3,6,8 Red and white CLAY (CL), mottled.	7	27	26 - 28		Gray to organge-brown SAND (SP), medium grain, and red and white CLAY(CL),
	*-4	28_	22 22		
-10 30	7	71	.28 - 30	2,3,6,8	Red and white CLAY (CL), mottled.
	-10	30			
· · · · · · · · · · · · · · · · · · ·	ļ	1	!	1	

1	ļ		- END OF BORING AT 30 FT BGS -
		_	

<u> </u>				
	NL Industrie			Boring Number: 29
Location:	Pedricktown	. New Jersey		Drilling Firm: Hardin-Huber, Inc.
_, _				Type of Drill: Mobil B-61
Start Date:	14-Jul-98			Driller: J. Corron
Completion Date:	14-Jul-98			Geologist: D. Scotti
Ground Elevation:	18 ft above r	nsl (est.)		Depth to Groundwater While Drilling: 9 ft bgs
Depth of Boring:	15.5 ft bgs			
Drilling Methods:	4.25" ID Hol	low Stem Au	igers	Well Installed: X
				Abandoned:
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msi)	(ft bgs)	Interval	(Blows/6")	(Lithologic description based on examination of split-spoon samples obtained from corresponding well 30)
18_#	0_			
17_	1]	Ì		Concrete and asphalt (FILL)
16_	2			
15_	3]			
14	4]			
13_	5		_	Dark yellowish-brown SILTY SAND (SM), moist.
12	6]			·
11	,]			
10_	.]			
9_	9			Dark yellowish-brown, orange-brown, and brown SILTY SAND (SM), becoming
8_	10_			clayey at 12 ft bgs.
7_	n_			(Collect sample for environmental analysis from 10-15.5 ft bgs).
6_	12			
5_	13			Brown SILTY SAND (SM) and CLAYEY SILTY SAND (SC), wet at 13 ft bgs.
4-1	14_			
3_	15			Brown CLAYEY SILTY SAND (SC), sands becoming more coarse at 17.5 ft bgs.
	-			- END OF BORING AT 15.5 FT BGS -
.4	4			
4	4			
4	4	I		
4	4			
4	4	ŀ	1	·
4	4			
4	4]	
4	4		į	
			İ	

Site Name:	NL Industrie	ies Inc. Superf	fund Site	Boring Number: 30
Location:	Pedricktown	ı, New Jersey	/	Drilling Firm: Hardin-Huber, Inc.
				Type of Drill: Mobil B-61
Start Date:				Driller: J. Corron
Completion Date:	14-Jul-98	<u></u>		Geologist: D. Scotti
	- .	÷ • •		
Ground Elevation:		nsl (est.)		Depth to Groundwater While Drilling: 9 ft bgs
Depth of Boring:	30 ft bgs			
Drilling Methods:	4 25" ID Ho	ollow Stem Au	1100FC	Well Installed: X
W. m		uous split spoo		Abandoned:
	77,140,	Jus spirit _r	// Sump	
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	·
18 #	# 0_			T
17_	الِ، [0-2	1	Concrete and asphalt (FILL)
16_	لِ 2 لِ	1 '	1	
15_	.3	2-4	1	
14_	'لـ ٠ لـ	 '	<u> </u>	
13	7 7	4-6	6,13,20,24	Dark yellowish-brown SILTY SAND (SM), moist.
12_	1 1	1 , . !	1 !	
Ü	¹ ¹ ¹ ¹	6-8	12,13,15,18	1
10	!	8 - 10	4,8,8,10	Dark yellowish-brown, orange-brown, and brown SILTY SAND (SM), becoming
9_ 8_	10	1 1	1	clayey at 12 ft bgs.
7_	1 1	10 - 12	6,9,11,12	clayer at 12 h ogs.
[،	12	11		
5_	1 1	12 - 14	9,8,8,10	Brown SILTY SAND (SM) and CLAYEY SILTY SAND (SC), wet at 13 ft bgs.
4_	14	4 🗇		
3_		14 - 16	5,4,5,6	Brown CLAYEY SILTY SAND (SC), sands becoming more coarse at 17.5 ft bgs.
2_	16_	1	1 1	1
1_	17_	16 - 18	4,4,5,7	1
-1_	18_1	18 - 20	4,6,12,15	Yellowish-brown SAND (SM), fine to coarse grain.
-2_	1. −1•			Reddish-yellow CLAYEY SAND (SC). grading to very pale brown SILTY SAND (SM).
-3_		20 - 22		Brown to pale brown SAND (SP), fine to coarse grain.
	22	()		
-5_		22 - 24	6,11,12,15	Brown SAND (SP), fine to coarse grain, 2-inch thick seam of white sands at 23 ft bgs.
*_	24			<u> </u>
-7_	ור ו	24 - 26		Brown SILTY SAND (SM) interbedded with brown to very pale brown SAND
*_	26_	ı		(SP - SM), coarse, angular grains, coarsest grains thus far.
ـ و	27	26 - 28	NR	1
-10_	2,8	,]	,	1
]	29_	28 - 30	6,8,10,12	Brown SILTY SAND (SM).
-12	30			
-13 31 30 - 32 2,3,8,12 Re		2,3,8,12 F	Red, white, and yellowish-brown CLAY (CL), mottled, stiff, tight, dry.	

-14	32	
		- END OF BORING AT 30 FT BGS -

Site Name:	NL Industrie	es Inc. Superf	und Site	Boring Number: 31
	Pedricktown			Drilling Firm: Hardin-Huber, Inc.
200200		, 11011 301303		Type of Drill: Mobil B-57 (ATV)
Start Date:	13-Jul-98			Driller: K. Huber
Completion Date:	13-Jul-98			Geologist: D. Scotti
<u>.</u>				
Ground Elevation:	13 ft above r	nsi		Depth to Groundwater While Drilling: 5.5 ft bgs
Depth of Boring:	15.5 ft bgs			· · · · · · · · · · · · · · · · · · ·
		···		•
Drilling Methods:	4.25" ID Hol	llow Stem Au	igers	Well Installed: X
		-		Abandoned:
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	(Lithologic description based on examination of split-spoon soil samples obtained from corresponding well 32)
13 ±	0			
12	[,			(0-6" Topsoil) Brown CLAYEY SANDY SILT with pieces of concrete (FILL).
11 <u>.</u>	2			
10_	3_			Brown CLAYEY SANDY SILT (FILL), grading toward sand and becoming moist
_ 9_	4_			with depth.
8_	5_			Strong brown SANDY SILT (ML), moist, wet at 5.5 ft bgs.
7_	6_			
6_	7_			Brown SILTY SAND (SM), very fine grain, 2-inch thick seam of fine to medium
5_	8_			grain sands with less silt at 7 ft bgs.
¥_	٧_			
3_	10_			
2-	"-			Red and gray SANDY SILTY CLAY (CL) interbedded with brown SILTY SAND
1-	. 12_			(SM), 2-inch thick seam of brown sand and gravel at 11.8 ft bgs.
°-1	13_			Brown CLAYEY SILTY SAND (SC), very fine to coarse grain sands, few gravel.
-'-	14-	-	_	Brown SAND and GRAVEL (SW), grading into alternating beds of light brown-gray
-2 -3	15_			CLAYEY SILTY SAND (SC) and orange-brown SANDY SILTY CLAY (CL) at
Ӡ	16_			14.3 ft bgs. sands are very fine to medium grain.
]]			
]]			- END OF BORING AT 15.5 FT BGS -
]][.*		
]			
]]			
]			•
	li l			

Site Name:	NL Industries Inc. Superfund Site	Boring Number: 32
Location:	Pedricktown, New Jersey	Drilling Firm: Hardin-Huber, Inc.
		Type of Drill: Mobil B-57 (ATV)
Start Date:	13-Jul-98	Driller: K. Huber
Completion Date:	13-Jul-98	Geologist: D. Scotti

Ground Elevation: 13 ft above msl Depth to Groundwater Wile Drilling: 5.5 ft bgs

Depth of Boring: 30.5 ft bgs

Drilling Methods: 4.25" ID Hollow Stem Augers Well Installed: X
with continuous split spoon sampling Abandoned:

	With Continu	ous spiit spot	on samping	Adandoned:
Elevation (ft above msl)	Depth (ft bgs)	SPT Interval	SPT (Blows/6")	Lithologic Description
13 <u>=</u> 12	0-1	0 - 2	3,10,14,17	(0-6" Topsoil) Brown CLAYEY SANDY SILT with pieces of concrete (FILL).
13_ 10_ 9	2_ 3_	2-4	10,13,10,7	Brown CLAYEY SANDY SILT (FILL), grading toward sand and becoming moist with depth.
8_	5	4-6	3,5,6,10	Strong brown SANDY SILT (ML), moist, wet at 5.5 ft bgs.
7_ 6_ 5_ 4_	6_ 7_ 8_ 9_	6 - 8 8 - 10	5,7,9,10 7,9,10,9	Brown SILTY SAND (SM), very fine grain, 2-inch thick seam of fine to medium grain sands with less silt at 7 ft bgs.
3_ 2_ 1_	10 _ 11 _ 12	10 - 12	2,3,7,10	Red and gray SANDY SILTY CLAY (CL) interbedded with brown SILTY SAND (SM), 2-inch thick seam of brown sand and gravel at 11.8 ft bgs.
o	13	12 - 14	5,6,6,5	Brown CLAYEY SILTY SAND (SC), very fine to coarse grain sands, few gravel.
2_ 3_ 4	15_ 16_ 17	14 - 16 16 - 18	3,4,4,5 5,4,4,7	Brown SAND and GRAVEL (SW), grading into alternating beds of light brown-gray CLAYEY SILTY SAND (SC) and orange-brown SANDY SILTY CLAY (CL) at 14.3 ft bgs, sands are very fine to medium grain.
.5 -6]	18 19	18 - 20	11,12,8,10	Orange-brown SAND (SP), very fine to medium grain, well sorted, becoming a
.7_ -8_ -9_	20 21 22	20 - 22	11,10,13,20	SANDY CLAY (CL) interbedded with brown CLAYEY SILTY SAND (SC) at 19 ft. Strong-brown SAND (SP), very fine to medium grain, well sorted, few fines, 1-inch thick band of red sands at 21.5 ft bgs, and 1-inch thick seam of red-brown clayey
-10 -11	23	22 - 24	12,10,14,23	sand at 23.5 ft bgs.
-12	25	24 - 26	2,19,13,20	Brown SAND (SP), fine to medium grain.
-13] -14 _	26	26 - 28		Red and brown CLAY and SAND (SC), grading to red and brown very fine to medium grain sands with appreciable fines, fines less prominent with depth.
-15 -16 -17	28_ 29_ 30_	28 - 30		Red SAND (SP), coarse, with few gravel interbedded with brown to organge-brown, fine to medium grain sands.

- END OF BORING AT 30.5 FT BGS -

Site Name:	NL Industries Inc. Superfund Site	Boring Number: MW-34
Location:	Pedricktown, New Jersey	Drilling Firm: Unitech Drilling Co., Inc.
		Type of Drill: CME 750
Start Date:	6-May-99	Driller: Chris Warren
Completion Date:	6-May-99	Geologist: P. Boteck
Ground Elevation: Depth of Boring:	20 bgs	Depth to Groundwater While Drilling: 2.5 ft.
	4.25" ID Hollow Stem Augers	Well Installed: X
Drilling Methods:		

Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	Litinologie Description
	0		1	Top 6" dark brown SILT and SAND top soil, then 4" light
•	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	0 - 2	1,1,1,2	brown f-m sand, some silt (Rec. =10")
	2 3	2 4	2,3,3,4	Light brown and pale grey f-m SAND, some silt. Wet at 2.5' (Rec. = 16")
- -	5	4-6	3,3,4,5	Pale grey m-f SAND, some silt, trace gravel (Rec. =16")
-	6 7	6 - 8	6,7,8,9	SAND (m-c), some fine sand, few silt and f-m gravel (rec.=12")
•	8 9	8 - 10	7.8.4.4,	Top 5" grey m-c SAND with few rounded medium gravels.
	10			Bottom 3" dark crown, organic-rich, stiff CLAY. (Rec.=8")
_]	10 - 12	2,3,3,4	Dark brown med. SAND with silt, few clay, and rounded gravel.
- -	12	12 - 14	9,9,10,11	Tight, top 3" has most of the clay. (Rec.=6") Dark Brown SAND w/ silt, some clay, tight. 1" to 2" lenses of dark brown, organic-rich clay w/ m. rounded gravel. (Rec.=18")
-	15	14 - 16	3,4,4,7	Top 8" light grey m. SAND w/ mod. stiff clay and some silt. Then 4" m. SAND w/ some silt and clay. Then 4" dk. brown SILT w/ med snd
- -	16_ 17_ 18	16 - 18	6,9,9,5	Light grey m-c SAND and f-c GRAVEL, some silt. At 10", v.stiff white clay for 2" followed by 2" of pale white m-c sand w/silt (Rec. 14)
	19	18 - 20	4.3.3,6	Pale white m-f SAND, w/silt, some clay
	20			Bottom 6" red and white mottled CLAY.
				- END OF BORING AT 20 FT BGS -

Site Name:	NL Industries Inc. Superfund Site	Boring Number: MW-33
Location:	Pedricktown, New Jersey	Drilling Firm: Unitech Drilling Co., Inc.
		Turn of Duille CLAT 750

Start Date: 6-May-99 Driller: Chris Warren

Completion Date: 6-May-99 Geologist: P. Boteck

Ground Elevation: Depth to Groundwater While Drilling: 2.5 ft.

Depth of Boring: 10 bgs

Drilling Methods: 4.25" ID Hollow Stem Augers Well Installed: With continuous split spoon sampling Abandoned:

Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	Shirongle Statisphon
				Top 6" dark brown SILT and SAND top soil, then 4" light
]	0-2		brown f-m sand, some silt (Rec. =10")
	2			
-	3	2-4		Light brown and pale grey f-m SAND, some silt. Wet at 2.5
-	4			(Rec. = 16")
-	5_	4 - 6		Pale grey m-f SAND, some silt, trace gravel (Rec. =16")
	6 - 7 -	6 - 8		SAND (m-c), some fine sand, few silt and f-m gravel (rec.=12")
-	8_ 9_	8 - 10		Top 5" grey m-c SAND with few rounded medium gravels.
_	10			Bottom 3" dark brown, organic-rich, stiff CLAY. (Rec.=8")
· ,	11		<u></u> .	- END OF BORING AT 10 FT BGS -
-	12_			
-	13			
-	14_ 15			
	16			•
]	17]			
	18			
	19			
. 4	20			
4	4			

Ch. N	>** 1 1 . <i></i>		10'	Boring Number: OW-1
Site Name:		ies Inc. Superfu	ina Site	
Location:	Pedricktown	n, New Jersey		Drilling Firm: B&F Environmental
Stant Date	22 1 00			Type of Drill: Mobil B-57
Start Date:	27-Jan-99			Driller: B. Michaelis
Completion Date:	27-Jan-99			Geologist: D. Scotti
Ground Elevation:	10 ft above	al		Donath to Communicate While Buildings 2.A to-
Depth of Boring:	26 ft bgs	ijisi		Depth to Groundwater While Drilling: 3 ft bgs
Depth of Borring.	20 1t 0gs			
Drilling Methods:	3.25" ID Ho	ollow Stem Aug	ers	Well Installed:
	*****	oon sampling		Abandoned: X
				(4 in - diameter well to be installed at a future time
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	
			1	
10 <u>#</u>	°_			Dark brown CLAYEY SILT (ML), few sand and gravel, moist,
	<u>'</u>			(FILL).
			}	Some organic material at 2 - 4 ft bgs. Wet at 3 ft bgs.
7 6	` <u>'</u> †		1	The second state of the second
		4-6	7,7,9,10	Dark brown SAND and SILT (SM) grading to a dark brown
, - ,	[7		,,,,,,	CLAYEY SAND (SC), abundant organic material, sulfur odor.
3	, ,			
2	. 1			Gray SANDY CLAY (CL) grading to a gray SAND (SP). fine to med.
.]	,			Light brown and gray SAND (SP), fine to medium grain.
[ه	10			
-1]	10 - 12	4,6,11,18	
-2	12]			
-3	13		i	Gray SAND and GRAVEL (SW), sand grains are coarse, subrounded,
4_	14			some white, pink, and yellow grains. Becoming a coarse SAND (SP)
-5_	15			and then a fine to medium grain SAND (SP), with fines, clayey lens
4 _	16_			at 14 ft bgs. Few coarse grains at 14 to 16 ft bgs and a 1" thick clay
-7_	17_	16 - 18	10,14,20,15	seam at 15 ft bgs. Light brown, gray, white, and pink SAND (SP) at
4_	18_			16 - 18 ft bgs, fine to medium grain, some silts, few gravel.
- -	19_			White SAND and GRAVEL (SW - GW), sand grains are coarse, 1"
-10_	20_			diameter gravels at 18 - 19 ft bgs, some fines.
-0_	21_	20 - 22	12,11,12,15	Some small pockets of clay at 20 - 22 ft bgs.
-12	22		0.10.10.55	
-13	23_	22 - 24	8,10,19,28	White SAND (SP - SW), coarse, some fine to medium grains, a 1"
-14-	24	34.36		thick clay lens at approximately 22.5 ft bgs.
-15_	25	24 - 26		White to light gray SAND and GRAVEL (SW - GW), sand grains are
-16	26	26 20		coarse. Fining to white CLAYEY SAND (SC) at 26 ft bgs.
-17	.27	26 - 28		GRAVEL (GW), coarse, at top of brown and gray CLAY (CL), stiff,
-18	28			mottled, changing to red and white mottled clay at 27 ft bgs, thick.
4	4			- END OF BORING AT 26 FT BGS -
				(split-spoon sample to 28 ft bgs; drill only to 26 ft bgs)

Site Name:	NL Industri	es Inc. Superfu	and Site	Boring Number: PW-1
Location:		n, New Jersey		Drilling Firm: B&F Environmental
		<u></u>		Type of Drill: Mobil B-57
Start Date:	27-Jan-99			Driller: B. Michaelis
Completion Date:	27-Jan-99			Geologist: D. Scotti
_		· · · · · · · · · · · · · · · · · · ·		
Ground Elevation:	10 ft above	msl		Depth to Groundwater While Drilling: 3 ft bgs
Depth of Boring:	26 ft bgs			
Drilling Methods:	3.25" ID Ho	llow Stem Aug	gers	Well Installed:
	with continu	ous split spoo	n sampling	Abandoned: X
				(6 in - diameter well to be installed at a future time
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	
10 <u>#</u>	٥_			
9_	1_	0-2	8,6,4,4	Dark brown CLAYEY SILT (ML), few sand and gravel, moist,
8_	. 2_			plastic casing (FILL).
7_	3 _	2-4	3,2,2,1	Some organic material, wood chips at 2 - 4 ft bgs. Wet at 3 ft bgs.
6_	4.4			
5_	5_	4-6	1,1,1,3	Light brown SAND and SILT (SM) grading to a dark brown
4-	6-			CLAYEY SAND (SC), abundant organic material, sulfur odor.
3_	7-	6-8	4,4.8,11	
2_	*-	9 10	3 (0 1 1	Gray SANDY CLAY (CL) grading to a gray SAND (SP), fine to med.
'-	٩٦	8 - 10	3,6,8,11	Light brown and gray SAND (SP), fine to medium grain.
°	1º-l	10 - 12	10 10 12 14	·
٠, -	11	10 - 12	10,10,12,16	·
-2 _ -3 _	13	12 - 14	3,9,15,16	Gray SAND and GRAVEL (SW), sand grains are coarse, subrounded,
4	14			some white, pink, and yellow grains. Becoming a coarse SAND (SP)
-3]	15	14 - 16	4,7,14,16	and then a fine to medium grain SAND (SP), with fines, clayey lens
4]	16_			at 14 ft bgs. Few coarse grains at 14 to 16 ft bgs and a 1" thick clay
-7	17	16 - 18	12,11,17,28	seam at 15 ft bgs. Light brown, gray, white, and pink SAND (SP) at
-8	.18			16 - 18 ft bgs, fine to medium grain, some silts, few gravel.
-9_	19_	18 - 20	7,9,10,9	White SAND and GRAVEL (SW - GW), sand grains are coarse, 1"
-10	20_			diameter gravels at 18 - 19 ft bgs, some fines.
-11_	21	20 - 22	5,3,6,10	White SAND and GRAVEL (SW - GW), sand grains are coarse
-12	22	22.2.		5" thick white clay lens at approximately 20.2
-13	23	22 - 24	4,6,8,10	White SAND (SP - SW), coarse, some fine to medium grains, a 1"
-14	24	24.24	10 12 17 10	thick clay lens at approximately 22.5 ft bgs.
-1,5	25	24 - 26	10,12,17,19	White to light gray SAND and GRAVEL (SW - GW), sand grains are
-16	26	76 70	0 12 12 21	coarse. Fining to white CLAYEY SAND (SC) at 26 ft bgs.
17_	27 _	26 - 28		GRAVEL (GW), coarse, at top of brown and gray CLAY (CL), stiff,
-18.	28			mottled, changing to red and white mottled clay at 27 ft bgs, thick.
4	4			- END OF BORING AT 26 FT BGS -
				(split-spoon sample to 28 ft bgs, drill only to 26 ft bgs)

Site Name:	NL Industries Inc. Superfund Site	Boring Number: LFE-	1
Location:	Pedricktown, New Jersey	Drilling Firm: Hardin-Hu	iber, Inc.
		Type of Drill: Mobil B-5	7 (ATV)
Start Date:	21-Jul-98	Driller: J. Corron	
Completion Date:	21-Júl-98	Geologist: J. Moore	
Ground Elevation:	8 ft above msl	Depth to Groundwater Wile Drilli	ing: 6 ft bgs
Depth of Boring:	26 ft bgs		
Drilling Methods:	4.25" ID Hollow Stem Augers	Well Install	led:
	with continuous split spoon sampling	Abandon	ed: X

Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	
8_#	٥٦			
7	1_	0-2	2,2,3,4	Dark brown organic matter grading toward SILT and SAND (SM), damp, some
6_	2_			clay.
5_	3_	2-4	4,4,4,5	Brown SILT and SAND (SM), fine to medium grain sands, some gravel, abundant
4_	4_			organic material (marsh conditions).
3_	5_	4 - 6	5,6,10,11	Brown SAND (SM), fine to coarse grain, some silt, damp.
2_	6_		İ	
1_	7_	6-8	5,7,12,9	Brown SAND (SM), fine to coarse grain, some silt and gravel. Wet at 6 ft bgs.
0	*-			
-آ –	9_	8 - 10	3,12,13,13	Brown SAND (SM), fine to coarse grain, some silt and clay.
-2_	10			
-3_	11 →	10 - 12	-11,17,16,16	Tan GRAVEL and SAND and CLAY (GC), fine to coarse grain sands, some silt.
	12_			Fines are cohesive, wet.
-5 <u>.</u>	13_	12 - 14	4,9,10,15	Grayish white SAND and GRAVEL and CLAY (GC), medium to coarse grain sands,
	14_	14 12		some silt, contains dark micaceous minerals, less cohesive than above. Clay
7-	15_	14 - 16	5,7,8,9	content increasing with depth.
*4	16_	16 10	440.00	
* -	17_	16 - 18	4,12,10,7	Gray SAND and CLAY (SC), fine grain sands, cohesive.
-10_	18_	18 - 20	4537	Deduction CLAY (CL)
-11-	19-	10-20	4,5,7,7	Red and gray CLAY (CL), mottled, stiff.
-12 -i-	20	20 - 22	8,9,10,10	
-13	21_	20 - 22	0,2,10,10	
-14	22	22 - 24	3,4,6,9	
-15 -16	23	***	3,4,0,9	
-1° -17	24	24 - 26	2,4,6,8	Red and gray CLAY (CL), mottled, stiff, with some silt and trace fine sand grains.
-17-	25_ 26	-7-20	بىرى. ئارىرى	and gray CEAT (CE), mounted, sum, while some sint and trace line sand grains.
+18		<u> </u>		
	4			

Site Name:	NL Industries Inc. Superfund Site	Boring Number: LFE-2
Location:	Pedricktown, New Jersey	Drilling Firm: Hardin-Huber, Inc.
		Type of Drill: Mobil B-57 (ATV)
Start Date:	21-Jul-98	Driller: J. Corron
Completion Date:	21-Jul-98	Geologist: J. Moore
Ground Elevation:	8 ft above msi	Depth to Groundwater Wile Drilling: 6 ft bgs
Depth of Boring:	26 ft bgs	
Drilling Methods:	4.25" ID Hollow Stem Augers	Well Installed:
	with continuous split spoon sampling	Abandoned: X

Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	
8_#	0_			
7-1	1-	0-2	4,5,5,4	Brown SAND and SILT (SM), fine grain sands, some organic matter.
6 5	²-	2 - 4	3,5,8,10	Brown SAND and SILT (SM), fine grain sands, some gravel and organic matter.
1	4			
,]	5]	4-6	16,24,25,20	Brown SAND and SILT (SM), fine grain sands, some gravel and clay.
2_	6_			
'-	7_	6-8	6,8,14,7	Gray to brown SAND (SW - SC), fine to coarse grain, some gravel and clay. Wet at 6 ft bgs.
0_\ -1_		8 - 10	6,8,17,25	at on ogs.
-2	10			
-3]	10 - 12	9,9,14,12	Gray GRAVEL and SAND and CLAY (GC), cohesive.
4_	12	12 - 14	5,11,5,9	Tan and gray SAND and SILT (SW - SC), some gravel and clay, less cohesive than
.s_ .d_	13 _ 14	12-14	3,11,3,9	above.
-7	15	14 - 16	3,5,7,6	Tan SAND and GRAVEL (SW), fine to coarse grain sands, some silt.
-8_	16	14 10	471010	Constant of Charles (CW)
-9 -10	17_ 18_	16 - 18	4,7,10,10	Gray SAND and GRAVEL (SW), medium to coarse grain sands, some silt and clay, cohesive.
-n	" 19_	18 - 20	4,4,4,5	
-12	20			
-13_	21	20 - 22	6,7,10,11	
-14 -15	22_	22 - 24	5,4,10,14	Gray CLAY (CL), stiff, some silt, sand, and gravel.
-16	24			
-17	25	24 - 26	4,4,7,7	Red and gray CLAY (CL), mottled, stiff, with some silt and trace fine sand grains.
-18	26	i		
_	4	- END OF BORING AT 26 FT BGS -		

				LITHOLOGIC LOG
Site Name:	NL Industrie	es Inc. Super	fund Site	Boring Number: LFE-3
Location:	Pedricktown	n. New Jersey	, 	Drilling Firm: Hardin-Hüber, Inc.
				Type of Drill: Mobil B-57 (ATV)
Start Date:	21-Jul-98			Driller: J. Corron
Completion Date:	21-Jul-98			Geologist: J. Moore
Ground Elevation:		ışl	· · · · · · · · · · · · · · · · · · ·	Depth to Groundwater Wile Drilling: 5.5 ft bgs
Depth of Boring:	26 ft bgs			
Drilling Methods:	4 DET ID US	Ilau Ctam A		W.D T.,,,,,,
Drining Atemods:			on sampling	Well Installed:
	with continu	ous spin spo	on sampning	Abandoned: X
		ľ		
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msi)	(ft bgs)	Interval	(Blows/6")	Littiologic Description
			1	
8 <u>-</u>	<u> </u>	0-2	3,4,10,10	Brown SAND and SILT (SM), fine grain sands, some organic matter, dry.
· <u>-</u>	'-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	or the did one i (ort), this grain saids, sould organic matter, dry.
` -	3	2-4	6,6,8,10	Brown SAND (SM), fine to medium grain sands, some gravel and silt, dry.
	1 1]	and any any
3_	, ,	4-6	2,5,6,7	Tan SAND (SW), fine to coarse grain, some gravel, very moist. Wet at 5.5 ft bgs.
2_				, , , , , , , , , , , , , , , , , , , ,
	j , j	6-8	3,5,7,7	
•				
-1_	,]	8 - 10	4,8,10,11	Gray GRAVEL, SAND, SILT, and CLAY (GC), slightly cohesive.
-2_	10]			
-3_	11	10 - 12	2,3,8,9	Gray SAND (SW - SM), fine to coarse grain, some gravel and silt, contains dark
4_	12_			micaceous minerals, few clay, less cohesive than above.
⁻³ −	13_	12 - 14	3,7,8,8	Tan and gray SAND and GRAVEL (SW - SC), some silt and clay, less cohesive
-6_	14_	14 16	2222	than above.
-7_	15_	14 - 16	2,2,3,2	
*_		16 - 18	3,5,5,7	Tan and gray SAND and GRAVEL (SW - SC), some silt and clay, grading toward a clay.
-9_ -10	17_			Gray and red SILTY CLAY (CL).
7	18_	18 - 20	5,5,7,13	Gray SAND and CLAY (SC), fine to coarse grain sands, some gravel.
-11 -12	19 - 20	.5 20	-,-,,,,	on the mid out to the to course grain sames, some graver.
-12 <u>-</u> -13	7	20 - 22	3,7,10,13	Gray SAND (SP), fine to coarse grain.
.13	21		٠,,,,,,,,,	with and the for the contract Brain.
-js	23	22 - 24	6,7,22,30	
-16	24		,- :	*
-17	25	24 - 26	10,11,19,30	
-18	26			
			•	- END OF BORING AT 26 FT RGS -
7	7		- 9,22,17,00	- END OF BORING AT 26 FT BGS -

Page 1 of 2

Site Name:	NL Industrie	s Inc. Superf	und Site	Boring Number: LFE-4
Location:	Pedricktown	, New Jersey		Drilling Firm: Hardin-Huber, Inc.
				Type of Drill: Mobil B-57 (ATV)
Start Date:	22-Jul-98			Driller: J. Corron
Completion Date:	22-Jul-98			Geologist: P. Botek
Ground Elevation:	8 ft above m	sl		Depth to Groundwater Wile Drilling: 6 ft bgs
Depth of Boring:	52 ft bgs	··		
Drilling Methods:				Well Installed:
	with continu	ous split spoo	on sampling	Abandoned: X
				
	<u> </u>		<u></u>	
Elevation -	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	
8 <u>#</u>	٥_			
7_	1_	0-2	2,3,7,7	Light brown to gray SILTY SAND (SM).
6_	2_			
5_	3_	2-4	3,4,5,9	Brown SILTY SAND (SM), with few rounded gravel.
4_	4_			
3	5_	4-6	5,7,6,4	Light brown SILTY SAND (SM). Wet at 6 ft bgs.
2	6-		671012	Pale gray CLAYEY SILT (Ml.), very tight.
1-	'-l	6 - 8	5,7,10,13	
0.1 -1	8-	8 - 10	3.5.10.11	Pale gray to white to brown SILTY SAND (SM).
				Light brown and gray SANDY CLAY (CL), mottled, very tight, grading to clayey sand.
-2_	10_	10 - 12	5,9,11,9	Pale gray to light brown CLAYEY SAND (SC), very tight.
·3_	"-	10-12	3,5,11,5	i ale glay to right brown CEATE i SAND (SC), very again.
* = -33	12 <u>.</u> 13			<u> </u>
š_ -6	14	12 - 14	3,5,9,9	Pale gray CLAYEY SILT (ML), very tight, with some iron oxide staining.
.7	15	14 - 16	4,5,5,6	Pale gray SILTY SAND (SM)
=	16			Pale gray and light brown CLAY (CL), mottled, stiff.
[4	17	16 - 18	5,6,5,5	Pale gray CLAYEY SAND (SC), medium to coarse grain sands, grading to gray and
-10	18]			yellowish-brown SAND (SM - SC) and gray SILTY CLAY (CL), stiff at end of spoon.
-11_	19	18 - 20	4,9,11,11	Gray CLAYEY SILT (ML).
-12	20			Pale gray SILTY SAND (SM).
-13_	21	20 - 22	1,1,2,2	Pale white SILTY SAND (SM), fine to medium grain, loose.
-14_	22		,	
-15	23_			
-16_	24_			
-17_	25_			
-18_	26_	25 - 27	7,7,10,11	Light-gray to pale white SILTY SAND (SM), fine to medium grain, contains dark
-19_	27			micaceous minerals.
-20_	28_	27 - 29	4,4,6,9	Pale white SAND (SP), coarse, angular grain, loose with some gravel and silt.

Page 2 of 2

Elevation	Depth	SPT	SPT (Plane (6")	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	Pale white SAND (SP). coarse, angular grain, loose with some gravel and silt.
-21 #	29	20. 21	4444	Pale gray SILTY SAND (SM), fine to coarse grain, some pink grains, loose.
-22	30_	29 - 31	4,4,4,4	Pale gray SILT 1 SAIND (SW), thie to coarse grain, some plink grains, toose.
-23_	31-			
-24	32	32 - 34	7,10,17,20	Red and tan and pale white CLAY (CL), mottled, stiff, moist.
-25_	³³ -	32-34	7,10,17,20	Red and tan and pare write CLAT (CL), modice, still, moise.
-26	34_	34 - 36	Shelby Tube	,
-27_	35_	34-30	Shelby Tube	
-28	36	36 - 38	Shelby Tube	Pale gray SILTY SAND (SM), with some clay.
-29	37_	30-36	Siletoy 1 ubc	rate gray Sill I Sand (Sing, with source etay).
-30_	38-	38 - 40	Shelby Tube	
-31_	39_		Sheloy Tube	
-32_	40	40 - 42	15.20.36.40	Red and brown CLAY (CL), mottled, stiff (2" thick seam) grading to light gray
-33	41_	70.72	10,20,00,70	and pale white SILTY SAND (SM), contains dark strictions - micaceous minerals.
-34-	42			and pare white order to the control of the control
-35_	43_			
-36 -37	44_ 45_			
-38	46]			
-39	47			
40	48	47 - 49	11,21,21,30	Red CLAY(CL), stiff, moist and pale gray SILTY SAND (SM), tight.
41	49		,	
-42	50			
-43_	51	50 - 52	4,10,15,16	
4	52			
		_		· · · · · · · · · · · · · · · · · · ·
]			
]]			- END OF BORING AT 52 FT BGS -
	_			
				•
	4			,
4	4			
4	4			
1 -	4			
-	4			
4	·			
∥ -	4			
	4			
∥ -	4			
-	4			
1 -	4			

C: N	.			Boring Number: SBE
Site Name:		es Inc. Superfu	ind Site	
Location:	Pedricktown	, New Jersey		Drilling Firm: Hardin-Huber, Inc.
San Data	0 1/4 00			Type of Drill: Mobil B-57 (ATV) Driller: K. Huber
Start Date:	9-Jul-98			The second secon
Completion Date:	9-Jul-98			Geologist: D. Scotti
Ground Elevation:	20 ft above	msl		Depth to Groundwater Wile Drilling: 14 ft bgs
Depth of Boring:	15 ft bgs			
				· · · · · · · · · · · · · · · · · · ·
Drilling Methods:	4.25" ID Ho	llow Stem Aug	ers	Well Installed:
	with continu	ous split spoo	n sampling	Abandoned: X
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	
20 #	0_			***
19	1_	0 - 2	2,4,9,11	(0-6" Topsoil with some Gravel) Dark yellowish brown SILT Loam (FILL
18_	2_			becoming more coarse and moist with depth, some gravel at 4 - 6 ft bgs
17_	3_	2 - 4	6,7,7,9	(max. 1" diameter).
16_	4_			
15_	5_	4 - 6	4,6,9,15	
14_	6_			
13_	7	6-8	4,8,11,14	Light olive brown to yellowish brown SAND (SP), medium grain, with
12_	8_			some gravel (max. 1" diameter) (FILL). Black staining at 9.6 ft bgs.
11_	9_	8 - 10	5,17,24,35	
10_	10			
٧_	11_	10 - 12	4,5,1,5,	Brown SAND (SP), very fine grain, well sorted loose, moist. Collect
*-	12-			sample for environmental analysis.
⁷ -	13_	12 - 14	7,5,4,7	Wet at 14 ft bgs. Collect sample for environmental analysis.
6-	14-			
5_	15_]	<u>.</u>		Gray SILTY SAND (SM), very fine to medium grain sands.
1				İ
1	1			
]	1			- END OF BORING AT 15 FT BGS -
]	.]			
]]			
][., •	1
]]			
]][İ
]]			
]]			
]]			

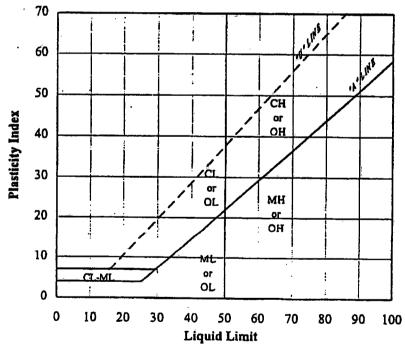
				2000
Site Name:		ries Inc. Super		Boring Number: SBW
Location:	Pedricktow	vn, New Jerse	:у	Drilling Firm: Hardin-Huber, Inc.
				Type of Drill: Mobil B-57 (ATV)
Start Date:				Driller: K. Huber
Completion Date:	9-Jul-98	~		Geologist: D. Scotti
i		msl		Depth to Groundwater Wile Drilling: 14 ft bgs
Depth of Boring:	15 ft bgs			 ·
Drilling Methods:	4.25" ID H	lollow Stem A	Augers	Well Installed:
			oon sampling	Abandoned: X
Elevation	Depth	SPT	SPT	Lithologic Description
(ft above msl)	(ft bgs)	Interval	(Blows/6")	•
20 #				
19	7 7	0-2	1,2,5,7	(0-6" Topsoil with some Gravel) Dark yellowish brown SILT Loam (FILL)
18_	اً ع	d '	1	becoming more coarse and moist with depth.
Ĭ7_	7 7	2-4	7,8,4,6	i
16_	الِ 4 ال	<u> </u>	·	1
15_	5]	4-6	4,4,4,8	1
14	ل و	/'		
13_	7 7	6-8	7,10,13,16	Brownish yellow SAND (SP), fine to medium grain, well sorted, moist, few silt,
12	- 1 -11	8 - 10	7141510	(FILL). Brownish vellow SAND and GRAVEL (SD) fine to mad grain conde gravel 2"
11_ 16	7 7	1 8-10	7,14,15,19	Brownish yellow SAND and GRAVEL (SP), fine to med. grain sands, gravel 2" dia. (max.), moist, few silt (FILL). Black staining on grains at 9.5 ft bgs.
10_	1 1	10 - 12	10 16 15 12	Dark yellowish brown SAND (SP), very fine to fine grain, well sorted loose, moist.
9_ 8	11	10-12	19,10,10,12	Dark yellowish brown SAND (SP), very fine to fine grain, well sorted loose, moist. Collect sample for environmental analysis. [PID = 5.3]
3-	1 1	12 - 14	11.11,11,11	Brown to dark gray SAND (SP), very fine to fine grain, well sorted, moist, wet at
<u>'-</u>	7 11	1 - 1	1	14 ft bgs. Dark staining on grains at 12 to 13.8 ft bgs. Collect sample for
5	15			environmental analysis. [PID = 7.1]
		:		- END OF BORING AT 15 FT BGS -

APPENDIX B

LANDFILL SITING EVALUATION GEOTECHNICAL ANALYSES

GEOSYNTEC CONSULTANTS

Geomechanics and Environmental Laboratory


Sample ID. LFE-4 34-36'

Project Name: N.L. Industries

Project No.: ME0015

rious Test Standards	SOIL INDEX PROPERTIES Figure
AS-RECEIVED MOISTURE CONTER	DRY UNIT WEIGHT OF UNDISTURBED SAMPLE
ASTM D 4643 Moisture Content (%): 16.7	ASTM D 2937 Dry Unit Weigh (γ _{d,} pcf):
ASTM D 854 ASTM C 127 Specific Gravity (-): 2.66	SOIL pH ASTM D 4972 EPA MET. 9045 pH: (with distilled-deionized water) pH: (with 0.01 M CaCl ₂ solution)
SOIL ORGANIC CONTENT	CARBONATE CONTENE
ASTM D 2974 Organic Content (%):	ASTM D 3042 (see figures) Carbonate Content (%):
ATTERREDG LIMITS	70

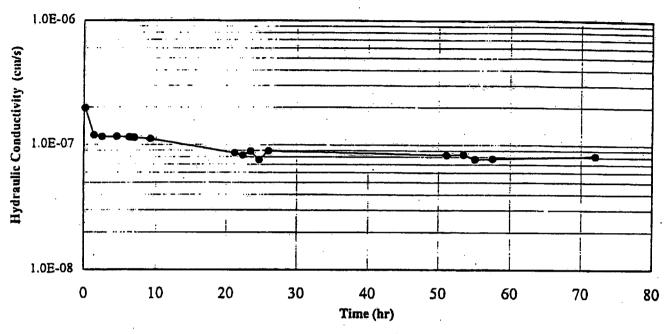
ASTM D 4318 Liquid Limit (LL, %): Plastic Limit (PL, %): Plasticity Index (PI):

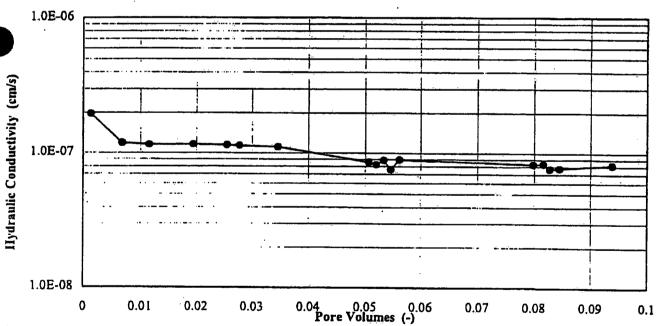
Sample	Lab Sample	Moisture	Dry Unit	Specific	Soi	рН	Organic	Carbonate	At	terberg Lim	its
D	Number	Content (%)	Weight (pcf)	Gravity (-)	(water)	(CaCl ₂)	Content (%)	Content	LL (%)	PL (%)	PI (-)
LFE-4 34-36'	98164	16.7		2.66							

GEOSYNT CONSULTANTS

Geomechanics and Environmental Laboratory

Sample II. LFE-4 34-36' Project Name:


Project No.:


N.L. Industries ME0015

ASTM D 5084

HYDRAULIC CONDUCTIVITY TESTING

Figure

Sample	Lab	Specimen Initial	Consolidation	Hydraulic		
ID	Sample No.	Dry Unit Weight (pcf)	Moisture Content (%)	Pressure, o _ë (psi)	Conductivity, k (cm/s)	
'LFE-4 34-36'	98164.1	111.7	16.6	17.4	8.0E-8	

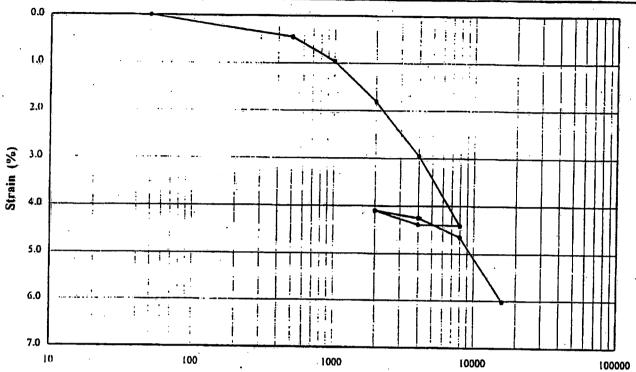
e(s):

GEOSYNTEC CONSULTANTS

Geomechanics and Environmental Laboratory

Sample ID:

LFE-4 34-36'


Project Name: Project No:

N. L. Industries ME0015

ONE-DIMENSIONAL CONSOLIDATION TEST

File Name: 5986800 XT S

Log of Pressure (PSF)

Client Lab Sample Sample ID No.	Lab	Specimen No.	Test Specimen Initial Conditions		Consolidation	Vertical	
	Sample No.		Dry Unit Weight (pcf)	Moisture Content (%)	Pressure (psf)	Strain (%)	Remarks
			,		500	0.45	
	1	<u> </u> -			1000	0.96	
	j		;		2000	1.81	
					4000	2.95	
	ļ		,		8000	4.41	
LFE-4	98164.2	1	109.6	17.6	4000	4.39	Rebound
34-36.					2000	4.09	Rebound
				. •	4000	4.25	Reload
					8000	4.65	Reload
					16000	6.02	
		·					

Note(s):

NA_YTICAL SERVICES, INC.

ENVIRONMENTAL MONITORING & LABORATORY ANALYSIS

110 TECHNOLOGY PARKWAY - NORCROSS, GA 30092 (770) 734-4200 - FAX (770) 734-4201

LABORATORY REPORT

ants ge Road October 1, 1998

022

arry Sigmon

Report No. 99409

Sample Description

ries, ME0015, Sample 98I63(LFE-4 32-34'), received

RESULTS

	<u>Result</u>	Detection <u>Limit</u>
:ity (Na Acetate) (meq/g)	61	0.41

Respectfully submitted,

Project Manager

Quality Assurance

Analytical Services Inc. Batch QC For Report Number :99409

itch itch iber	General Inf Analyte	ormation Analysis Method	Analysis			Blank Result	Prep. Method	
6 CEC Note : QC PASSES		EPA 9081 ON LCS,LCSD	sol	id	< 0.4100			
Contr	col Informat	ion	LC	LCD	LC	%Recovery	RPD	
ber	Analyte	Method	%Rec	%Rec	RPD	Range	Range	
 26	CEC	EPA 9081	104	102	2	76 - 124	0 - 20	
ix Sp	oike Informa	tion	MS	MSD	MS	%Recovery	RPD	
ber	Analyte	Method	%Rec	%Rec	RPD	Range	Range	
	CEC	EPA 9081	225	196	14	76 - 124	0 - 20	

For Report Number :99409

Q.C. Information for Batch # 42026

Sample Batch Information Analysis : CEC

	Prep	aration	Preparation	Ana			
ple ID		Time By	Notes	Date	Time	By	Inst
26BLANK	Na 09/28/9	8 0800 RCP	36	09/29/98	0948	MCW	ÏCP1
26LCS	Na 09/28/9	8 0800 RCP	36	09/29/98	0952	MCW	ICP1
26LCSD	Na 09/28/9	8 0800 RCP	36	09/29/98	0955	MCW	ICP1
OSMS	Na 09/28/9		36	09/29/98	0959	MCW	ICP1
OSMSD	Na 09/28/9		36	09/29/98	1002	MCW	ICP1
39	Na 09/28/9		36	09/29/98	1006	MCW	ICPl

APPENDIX C

CORE LABORATORIES REPORT

CORE LABORATORIES

PETROGRAPHIC ANALYSES

FOR

GEOSYNTEC CONSULTANTS SOIL SAMPLES NL INDUSTRIES PROJECT

> File 198178 October 1998

Performed by:
Core Laboratories, Advanced Technology Center
Reservoir Geology/Stratigraphy Group
1875 Monetary Lane
Carrollton, Texas 75006
U.S.A.
(972) 466-2673

PROJECT TEAM

Drew L. Dickert
Senior Petrologist

Malcolm S. Jones X-ray Diffraction Specialist

Mark A. Smesny Thin Section Preparation

Supervisor/Reviewer

TABLE OF CONTENTS

	Page
DISCUSSION Introduction Sample Descriptions Conclusions	1 1 1 2
ANALYTICAL PROCEDURES Thin Section Preparation X-ray Diffraction Analysis	3 3 3
REFERENCES	3
TABLE 1. Mineral Analysis by X-ray Diffraction TABLE 2. Point-Count Tally Sheet – Modal Percent	4 5
THIN SECTION PHOTOMICROGRAPHS AND DESCRIPTIONS PLATE 1: Sample SV26072098; Depth 14 – 16 feet PLATE 2: Sample SV28071698; Depth 12 – 16 feet PLATE 3: Sample SV29071598; Depth 10 – 16 feet PLATE 4: Sample SV40; Depth N.A.	

DISCUSSION

Introduction

Core Laboratories' Reservoir Geology/Stratigraphy Group, Carrollton, Texas, performed a petrographic study on four soil samples from NL Industries, Pedricktown, New Jersey. The analyses performed were detailed thin section petrography (includes a point-count of 250 points) and bulk & clay X-ray diffraction (XRD). The purposes of this study are to describe the natural soil texture and composition, document the presence or absence of any mineral matrices in the samples that may contain lead-bearing substances, and identify any lead-bearing substances, if possible. Table 1 shows the XRD data, and Table 2 contains the point-count results. Plates 1 through 4 display the thin section photomicrographs and descriptions. The following discussion summarizes the findings. For ease of reference in the discussion, the sample names have been shortened to SV26, SV28, SV29, and SV40.

Sample Descriptions

The thin section analysis shows that all four soil samples are poorly sorted sands. SV26, SV28, and SV40 are silty sands, in which at least ten percent of the grains are silt sized. SV29 is a muddy sand, where clay matrix and silt together compose over ten percent of the sample. The muddy sand has the finest estimated average grain size (0.28 mm, excluding clay matrix), whereas the other sands have estimated average grain sizes between 0.36 and 0.40 millimeters. Most of the grains in each sample range from <0.01 to 2.5 millimeters in diameter. No pebbles (grains >4 mm) are present in the thin sections; however, traces of pebbles were noted in the jars containing SV26 and SV28, and minor amounts of pebbles in the SV40 sample jar. The individual grain shapes in each sample range from rounded to angular. Subrounded and subangular grains are predominant. Angular grains are mostly concentrated in the finer grain size fractions. Samples SV29 and SV40 seem to contain greater amounts of rounded grains than the other two samples. compaction and natural pore systems could not be assessed, because these sands are unconsolidated and disaggregated in the thin sections. The uneven distribution of silt, clays, and heavy minerals in SV26, SV28, and SV40 could be wholly the result of sample preparation, or it may indicate the presence of some disrupted lamination.

The soil composition was measured two different ways. XRD analysis (Table 1) shows that three of the samples (SV 26, SV28, and SV40) contain 96 to 99 percent quartz, with small amounts of feldspars and clays. Sample SV29 contains only 83 percent quartz by XRD, with 11 percent clays and 5 percent feldspars. Point-count analysis (Table 2) shows similar proportions of quartz, feldspars, and clays, compared to Table 1. Most of the quartz occurs as individual mono- and poly-crystalline grains. The minor metamorphic rock fragments (0.4 – 2.4%) are mostly metaquartzites. Traces of quartz overgrowth cement are found on some grains (Plate 1B). Some of these overgrowths probably formed in-situ, but others may be relics from a recycled sandstone source. Small amounts of heavy minerals (magnetite/ilmenite, tourmaline, zircon, hornblende, etc.) and glauconite grains are also found in every sample. The muddy sand (SV29, Plate 3) contains common clay matrix. Samples SV28 and SV40 contain minor amounts of clay matrix, 2 percent and 3 percent by XRD, respectively. The thin

sections also reveal a little more clay in SV40 than SV28, although this is not reflected in the point-count results because of the highly uneven distribution of clays in SV40. The clay minerals are mostly detrital, but they appear to be partially altered and recrystallized. XRD results reveal that the clay fractions consist of 60 to 78 percent kaolinite and 22 to 40 percent illite/mica (includes sericite). Tiny crystals and coatings of iron oxide and titanium oxide represent 1.2 to 4.0 percent of the thin sections by point-count. Traces of organic grain coatings are present in one sample (SV29). Rare amounts of dolomite occur within a few quartz grains (SV26 and SV28). XRD detected possible traces of lead phosphate in SV28 and SV40.

Conclusions

The main purpose of this study was to document the presence or absence of any mineral matrices that may contain lead compounds that could be interpreted to be contaminants from the seeping of lead-bearing fluids into the soil. As a secondary purpose, any lead-bearing substances detected were to be identified.

Some of the quartz and feldspar grains show signs of leaching (pitted grains; Plates 1A & 4A), but this can be present in natural soils and does not necessarily indicate damage from contaminating fluids. The thin sections reveal no mineral grains or crusts that are composed principally of lead compounds. Using polarized and reflected light microscopy, the minor amounts of dark coatings on grains and tiny crystals in the clay matrix (Plates 1-4B) are identified as mostly iron and titanium oxides. Many of these crystals are so small (<1-3 microns) that they cannot be adequately identified in thin section. If any lead compounds or elemental lead are present, they should be associated with these tiny crystals and the oxide coatings. Clay aggregates of kaolinite and illite/mica may be able to adsorb lead onto the clay crystal surfaces; however, these clay types are not noted for absorption of elements into their crystal structures.

The traces of lead phosphate reported by XRD in SV28 and SV40 are based on one peak in the diffraction pattern matching the primary peak for lead phosphate. In XRD analysis, separate mineral phases are recognized by distinct diffraction patterns containing a primary peak and secondary peaks for each mineral. The secondary peaks of some minerals can overlap primary peaks of other minerals. Also, relative peak heights are related to mineral concentration, and the secondary peaks for minerals present in small quantities are not generally detectable. Even the primary peaks for trace minerals are sometimes difficult to resolve from background noise. The peak identified to be a primary peak for lead phosphate does not seem to correspond to a secondary peak of any other component in the sample (if it did, the interpretation of lead phosphate would not be justified). Thus, the presence of small amounts of lead phosphate is a possibility, even though a distinct diffraction pattern for this compound is lacking (no secondary peaks). If lead phosphate is indeed present, one would expect it to be most prevalent in SV29, where clay matrix and iron and titanium oxide coatings are most common, but XRD does not show traces of lead phosphate for this sample.

This thin section and XRD study shows that mineral matrices that may contain lead-bearing substances are present. However, lead compounds, if present, are rare in these soil samples. These analyses are not sufficiently sensitive to completely affirm or deny the presence of rare amounts of lead in these samples.

ANALYTICAL PROCEDURES

Thin Section Preparation

Sample fractions are prepared for thin section analysis by first impregnating them with epoxy to augment sample cohesion and to prevent loss of materials during grinding. A blue dye was added to the epoxy to highlight the pore spaces. Each sample was mounted on a frosted glass slide and then cut and ground in water to an approximate thickness of 30 microns. The thin sections were examined using standard petrographic techniques.

X-ray Diffraction Analysis

X-ray diffraction analysis provides the identification and quantification of the rockforming minerals present in the formation. Samples selected for bulk and clay X-ray diffraction analysis were dried and cleaned of obvious contaminants. Each sample was dried, weighed, placed in water and treated with a sonic cell disrupter. The resultant slurries were centrifuged to fractionate each fraction at 4 microns. The suspended <4 micron fraction was decanted and saved. The >4 micron fraction was dried and weighed to determine the percent of clay- and silt-sized materials. The suspended <4 micron fraction was suctioned onto a pure silver substrate to orient the clay-sized particles. The <4 micron fraction was analyzed in an air-dried state and then treated with ethylene glycol vapor for 24 hours and re-analyzed. The >4 micron fraction was milled and scanned on an X-ray diffractometer. The samples selected for bulk analysis only were also milled and scanned on the diffractometer. The resulting diffractograms were then analyzed for mineral content using a profile-fitting algorithm. The integrated areas from the profile-fitting algorithm were entered into a spreadsheet that contains correction coefficients for numerous minerals. These coefficients were obtained according to the adiabatic method outlined by Chung (1974a, 1974b, 1974c). The tabular data are reported in a weight percent format in Table 1.

REFERENCES

Chung, F.H. (1974) A new X-ray diffraction method for quantitative multicomponent analysis. Advances in X-ray Analysis, 17, 106-115.

Chung, F.H. (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519-525.

Chung, F.H. (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. Journal of Applied Crystallography, 7, 526-531.

Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas, 184p.

CORE LABORATORIES

Geosyntec Consultants NL Industries Project

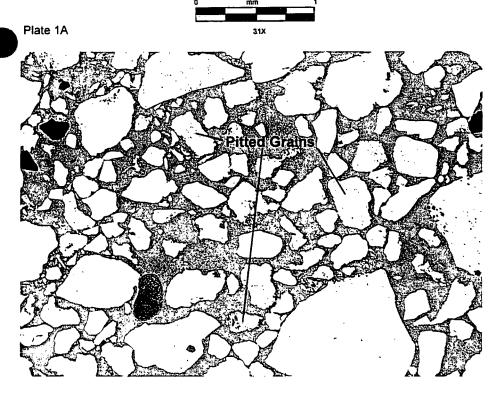
Table 1
Mineral Analysis by X-ray Diffraction

File: 198178

Whole Rock Composition (weight %)								Clay Abun								
Sample ID	Depth	Quartz	K feldspar	Plagioclase :	Calcite	Dolomite	Siderite	Pyrite	Pb phosphate	Hematite	Total Clays	Illite/Mica	Kaolinite	Chlorite	Smectite	lilite/ Smectite
SV26 7/20/98	14-16:	99	0 .	Tr	0.	Tr	0	0	0	0	1	31	69	•	0.	
SV28 7/16/98	12-16	96	1	1:	0	Tir	0	0.	Tr	0	2	40	60	ń	0.	0
SV29 7/15/98	10-16	83	3	2	0	1	o	0	Q.	Tir	11	22	78	n	.0	Ö
SV-40	N/A	96	Ø	Tir	0	1	0	0	Tr	0	3	36	64	ō	0	0

CORE LABORATORIES

Point-Count Tally Sheet


GeoSyntec Consultants Sand Soil Samples NL Industries Project C.L. File No:

198178

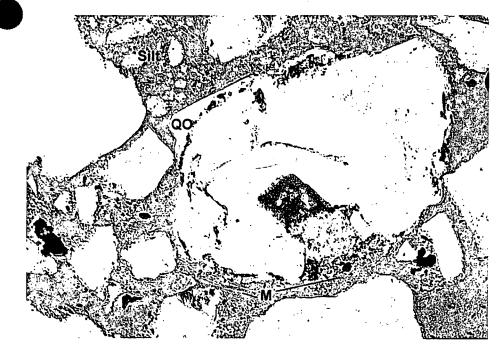

Date: Petrologist: 27-Oct-98 D. Dickert

Table 2 Modal Percent

Sample I		SV26	SV28	SV29	SV40
Quartz:	Monocrystalline	74.0	80.8	61.6	76.0
	Polycrystalline	17.6	10.8	7.2	17.2
	Total	91.6	91.6	68.8	93.2
Feldspars:	K-Feldspar	0.4	0.8	2.4	1.2
	Plagioclase	tr	tr	1.6	tr
	Total	0.4-	0.8	4.0	1.2
Rock	Crystalline Igneous		tr	0.8	tr
Fragments:	Sedimentary	0.4	tr	4.0	0.4
	Metamorphic	1.2	0.8	2.4	0.4
	Chert/Chalcedony	tr	1.2	0.4	0.4
	Total	1.6	2.0	7.6	1.2
Accessory:	Biotite	tr		tr	tr
	Muscovite	tr	tr	1.6	tr
	Magnetite/Ilmenite	1.2	tr	0.4	0.4
	Tourmaline	0.4	tr	0.4	tr
	Zircon	tr	0.4	tr	tr
	Homblende	tr	tr	0.4	tr
	Sphene	0.4		tr	
	Other Heavy Minerals	tr	tr	0.4	tr
	Glauconite	0.8	tr	0.4	tr
	Organic Debris	tr			1
	Total	2.8	0.4	3.6	0.4
Matrix:	Detrital Clay	0.4	2,8	10.8	2.4
	Pseudomatrix				
	Total	0,4	2.8	10.8	2.4
Clays:	Kaolinite	tir	tr		tr
(Authigenic)	Chlorite		tr	tr	tr
	Sericite	tŗ	tr	tr	tr
	Undiff. Illite/Smectite	0.8	0.4	tr	0.4
	Total	0.8	0.4		0.4
Non-Clay	Quartz Overgrowths	0.8	0.4	0.8	tr
Cements:	Feldspar Overgrowths				
	Dolomite	tr	tr		
	Pyrite				
	Iron Oxide	0.8	0.4	2.4	tr
	Titanium Oxide	0.8	1.2	1.6	1.2
	Organic Coatings			0.4	1
	Total	2.4	2.0	5.2	1.2
Porosity:	Not counted - disaggregated s	amples			1
-	Total				1
Grand Total		100.0	100.0	100.0	100.0

0 mm 025

GeoSyntec Consultants Soil Samples NL Industries Project Sample: SV26072098

Depth: 14 - 16 feet

Soil Ty	pe & Texture		
Classification (Folk)	Silty sand		
Grain Size (mm)	Range = <0.01 - 2.54		
(estimated)	Avg. = 0.40 (med. sand)		
Grain Sorting	Poor		
Grain Roundness	Rounded to angular		
Compaction	Disaggregated		
Structures	None evident		

	Comp	osition (%)	
Detrital Grain	ns	Detrital Matri	K
Mono. Qtz.	74.0	Clay	0.4
Poly. Qtz.	17.6	Authigenic Ci	lay
K-feldspar	0.4	Kaolinite	tr
Plagioclase	tr	Chlorite	
Igneous R.F.		Sericite	ţŗ
Sedim. R.F.	0.4	Undiff. I/S	0.8
Meta. R.F.	1.2	Cements (no	n-clay)
Chert	tr	Quartz O.G.	0.8
Biotite	tr	Feld. O.G.	
Muscovite	tr	Dolomite	tr
Heavy Min.	2,0	Pyrite	
Glauconite	0.8	Iron Oxide	0.8
Organics	tr	TiO ₂	0.8
		Organic	

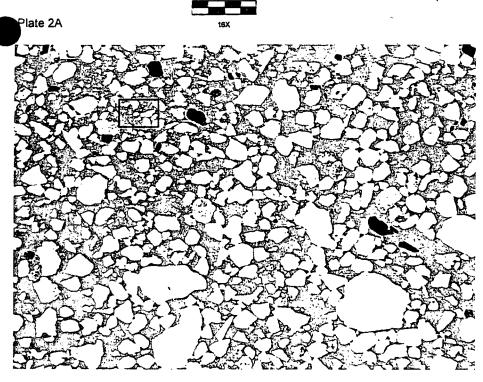

Photomicrograph Captions

Plate 1A: This soil sample consists of poorly sorted, silty sand. The white grains are nearly all quartz, but with small amounts of feldspar (mostly K-feldspar). Black grains in the upper-left and upper-right corners of the photo are magnetite/ilmenite. The well rounded, green grain in the lower-left quadrant is glauconite. Some quartz is slightly dissolved (pitted grains), as evidenced by traces of blue epoxy within the grains.

Plate 1B: A high-magnification view of the sample reveals dark-colored coatings on some grains and dark specks between grains. These dark brown to black materials are mostly iron oxide (hematite) and titanium oxide. No lead compounds are identified; however, traces of lead compounds may be associated with these dark crusts and specks. A quartz overgrowth (QO) is observed on top of a hematite grain coating. Tiny white grains between the larger grains are mainly quartz silt, along with small amounts of muscovite/sericite flakes (M).

Plate 1B

GeoSyntec Consultants Soil Samples

NL Industries Project Sample: SV28071698 Depth: 12 - 16 feet

Soil	Type	&	Textu	re

Classification (Folk)	Silty sand
Grain Size (mm)	Range = <0.01 - 2.18
(estimated)	Avg. = 0.38 (med. sand)
Grain Sorting	Poor
Grain Roundness	Rounded to angular
Compaction	Disaggregated
Structures	None evident

	Comp	osition (%)	
Detrital Grains		Detrital Matrix	Κ
Mono. Qtz.	80.8	Clay	2.8
Poly. Qtz.	10.8	Authigenic Cl	ay
K-feldspar	0.8	Kaolinite	tr
Plagioclase	tr	Chlorite	tr
Igneous R.F.	tr	Sericite	tr
Sedim. R.F.	tr	Undiff. I/S	0.4
Meta. R.F.	0.8	Cements (nor	ı-clay)
Chert	1.2	Quartz O.G.	0.4
Biotite		Feld. O.G.	
Muscovite	tr	Dolomite	tr
Heavy Min.	0.4	Pyrite	
Glauconite	tr	Iron Oxide	0.4
Organics		TiO ₂	1.2
		Organic	

Photomicrograph Captions

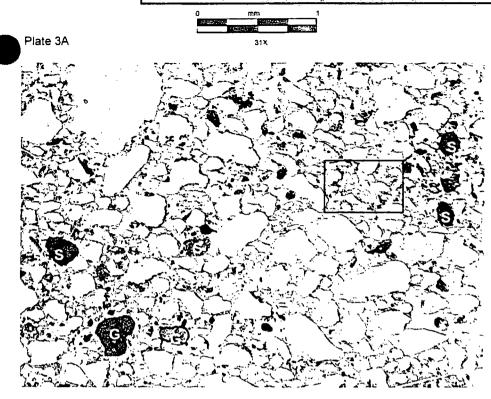

Plate 2A: This sample is very similar to the previous sample (Plate 1). A lower magnification is provided here, compared to Plate 1A. so that the silty texture of the sand is better observed (upperleft quadrant). Scattered dark grains are heavy minerals. The blackest grains magnetite/ilmenite.

Plate 2B: The area within the black rectangle in Plate 2A is presented in this photomicrograph. The main difference between this sample and SV26072098 is that this sample contains greater (although minor) amounts of clay matrix (yellowish green). This intergranular to grain-coating clay contains many tiny specks of titanium and iron oxides (black). Some of this micron-sized material may include lead compounds, but this cannot be established with thin section analysis. XRD analysis reveals that the clays in this sample are kaolinite and illite/mica.

Plate 2B

GeoSyntec Consultants Soil Samples NL Industries Project

Sample: SV29071598 Depth: 10 - 16 feet

Soil T	ype & Texture		
Classification (Folk)	Muddy sand		
Grain Size (mm)	Range = <0.01 - 2.02		
(estimated)	Avg. = 0.28 (med. sand)		
Grain Sorting	Poor		
Grain Roundness	Rounded to angular		
Compaction	Disaggregated		
Structures	None evident		

	Comp	osition (%)	
Detrital Grains		Detrital Matri	X
Mono. Qtz.	61.6	Clay	10.8
Poly. Qtz.	7.2	Authigenic C	lay
K-feldspar	2.4	Kaolinite	
Plagioclase	1.6	Chlorite	tr
Igneous R.F.	0.8	Sericite	tr
Sedim. R.F.	4.0	Undiff. I/S	tr
Meta. R.F.	2.4	Cements (nor	n-clay)
Chert	0.4	Quartz O.G.	8.0
Biotite	tr	Feld. O.G.	
Muscovite	1.6	Dolomite	
Heavy Min	1.6	Pyrite	
Glauconite	0.4	Iron Oxide	2.4
Organics		TiO ₂	1.6
		Organic	0.4

Photomicrograph Captions

Plate 3A: This is a poorly sorted, muddy sand sample. It is classified as muddy because of the common amounts of silt and clay occurring between the predominant sand grains. The white grains are mostly quartz, with minor amounts of K-feldspar and plagioclase. Various sedimentary argillaceous roof fragments (S) appear dark. Glauconite (G) grains are also noted. The one on the left appears orange due to oxidation.

Plate 3B: The area within the black rectangle in Plate 3A is shown. This sample contains common amounts of clay matrix (greenish brown). This clay coats grains and fills pores. It consists of 78% kaolinite and 22% illite/mica. according to XRD analysis. Within the clay are dark-colored coatings and crystalline specks that are predominantly iron (Fe) and titanium (Ti) oxides. Micron-sized particles of lead compounds may possibly also be present within the clays and oxide coatings.

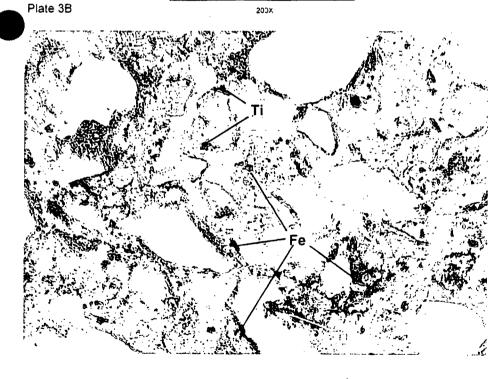
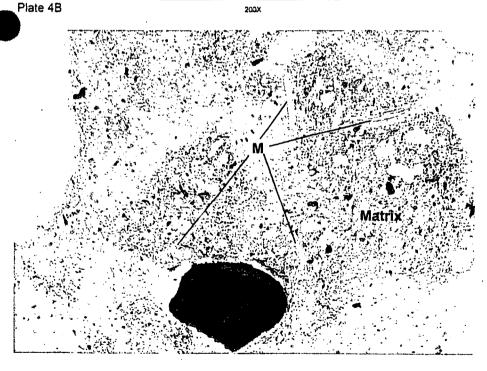


Plate 4A

GeoSyntec Consultants Soil Samples **NL Industries Project** Sample: SV40

Depth: N.A.

Soil Type & Texture Classification (Folk) Silty sand Grain Size (mm) Range = <0.01 - 2.05 (estimated) Avg. = 0.36 (med. sand) Grain Sorting Poor **Grain Roundness** Rounded to angular. Compaction Disaggregated Structures None evident


	Comp	osition (%)	
Detrital Grains		Detrital Matrix	(
Mono. Qtz.	76.0	Clay	2.4
Poly. Qtz.	17.2	Authigenic Cl	ay
K-feldspar	1.2	Kaolinite	tr
Plagioclase	tr	Chlorite	tr
Igneous R.F.	tr	Sericite	tr
Sedim. R.F.	0.4	Undiff. I/S	0.4
Meta. R.F.	0.4	Cements (nor	ı-clay)
Chert	0.4	Quartz O.G.	tr
Biotite	tr	Feld. O.G.	
Muscovite	tr	Dolomite	
Heavy Min.	0.4	Pyrite	
Glauconite	tr	Iron Oxide	tr
Organics		TiO ₂	1.2
		Organic	

Detrital Grains		Detrital Matri	K
Mono. Qtz.	76.0	Clay	2.4
Poly. Qtz.	17.2	Authigenic C	lay
K-feldspar	1.2	Kaolinite	tr
Plagioclase	tr	Chlorite	tr
Igneous R.F.	tr	Sericite	tr
Sedim. R.F.	0.4	Undiff, I/S	0.4
Meta. R.F.	0.4	Cements (no	n-clay)
Chert	0.4	Quartz O.G.	tr
Biotite	tr	Feld. O.G.	
Muscovite	tr	Dolomite	
Heavy Min.	0.4	Pyrite	
Glauconite	tr	Iron Oxide	tr
Organics		TiO ₂	1.2
		Organic	
			.=

Photomicrograph Captions

Plate 4A: Patches of silty clay matrix (light brown) are irregularly distributed in the thin section. This view shows an area where the matrix is relatively common. A slightly dissolved (pitted) feldspar grain is noted by the arrow. Black sand grains are ilmenite/magnetite.

Plate 4B: The portion of Plate 4A within the black rectangle is displayed. The black grain is probably magnetite that has an oxidized rim. The oxidation has stained the adjacent clay matrix brown. Most of the view features a patch of matrix consisting of detrital silt and clay. A few muscovite (M) flakes are part of the silt fraction. The numerous black specks in the matrix are titanium oxide, with traces of iron oxide and possibly other materials. If any lead compounds are present, they would be most likely to occur as very tiny crystals within this matrix. XRD analysis indicates the clay fraction of the matrix is kaolinite and illite/mica.

APPENDIX D

TOXSCAN, INC. LABORATORY REPORT

October 08, 1998

ToxScan Number: T-16324

GeoSyntec Consultants 10015 Old Columbia Road, Suite A-200 Columbia, MD 21046

Attn: Jeffrey Moore

Project Name:

NL

Project Number:

ME0015-13

Date Sampled:

July 15, 1998 - September 23, 1998

Date Received:

August 14, 1998 - September 23, 1998

Matrix:

Soil

Soil Extract

Please find the enclosed test results for the parameters requested for analyses. The samples were analyzed within holding time using the following methods:

Carbonate Cadmium by ICP/MS by EPA Method 200.8

Carbonate Lead by ICP/MS by EPA Method 200.8

Carbonate Lead by ICP/MS by EPA Method 200.8

Cation-Exchange Capacity by EPA Method 9081, conducted by Soil Control Lab

Extractable Cadmium by ICP/MS by EPA Method 200.8

Extractable Lead by ICP/MS by EPA Method 200.8

Extractable Lead by ICP/MS by EPA Method 200.8

Iron/Manganese Oxide/Hydroxide Cadmium by ICP/MS by EPA Method 200.8

Iron/Manganese Oxide/Hydroxide Lead by ICP/MS by EPA Method 200.8

Iron/Manganese Oxide/Hydroxide Lead by ICP/MS by EPA Method 200.8

Organic Cadmium by ICP/MS by EPA Method 200.8

Organic Lead by ICP/MS by EPA Method 200.8

Organic Lead by ICP/MS by EPA Method 200.8

Particle Size Distribution by Plumb

Percent Solids by EPA Method 160.3

pH by EPA Method 9045B

Residual Cadmium by ICP/MS by EPA Method 200.8

Residual Lead by ICP/MS by EPA Method 200.8

Residual Lead by ICP/MS by EPA Method 200.8

Total Metals by ICP/MS (Cd,Pb) by EPA Method 6020

This cover letter is an integral part of the report.

Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

October 08, 1998

ToxScan Number: T-16324

GeoSyntec Consultants 10015 Old Columbia Road, Suite A-200 Columbia, MD 21046

Attn: Jeffrey Moore

The samples were received intact and were handled with the proper chain-of-custody procedures. Appropriate QA/QC guidelines were employed during the analyses on a minimum of a 5% basis. QC results were within limits and are reported with or following the data for each analysis.

If you have any questions or require any additional information, please feel free to call.

Sincerely,

Philip D. Carpenter, Ph.D.

President

Enclosures

GeoSyntec Consultants

Method:

EPA Method(s) 200.8

Date Completed: Matrix:

9/29/98

Soil Extract

Units:

mg/Kg

Carbonate Metals

Client <u>Sample ID</u>	ToxScan <u>Lab ID</u>	<u>Analyte</u>	Sample <u>Value</u>	Reporting <u>Limit</u>
SV2910-12071598	16324-09	Cadmium	ND	0.1
		Lead	ND	0.1
SV2812-16071698	16324-10	Cadmium	ND	0.1
		Lead	0.17	0.1
			·	
SV071698-Dup	16324-11	Cadmium	ND	0.1
		Lead	0.14	0.1
SV26072098	16324-12	Cadmium	ND	0,1
		Lead	ND	0.1

ANALYTICAL CHEMISTS

and

BACTERIOLOGISTS

Approved by State of California

SOIL CONTROL LAB

Tel: 831 724-5422 FAX: 831 724-3188

42 HANGAR WAY
WATSONVILLE
CALIFORNIA
95076
USA

In any reference, please quote Cornified Analysis Number egyparing horses.

130152-4-3344

A Division of Control Laboratories Inc.

ToxScan Inc. 42 Hangar Way Watsonville, CA

95076

05 OCT 98

CERTIFIED ANALYTICAL REPORT

MATERIAL:

Soil samples received 27 August 1998

IDENTIFICATION:

T-16324, Quanterra

ID NUMBERS:

1/4-4/4-130152

Samo	1a	TD.

Cation Exchange Capacity (C.E.C.)

SV2910-12071598	3.57 meq/100 g dw
Dup	1.70 meq/100 g dw
SV2812-16071698	1.13 meq/100 g dw
Dup	0.89 meq/100 g dw
SV071698-Dup	0.91 meq/100 g dw
Dup	0.91 meq/100 g dw
SV26072098	2.72 meq/100 g dw
Dup	1.83 meq/100 g dw

The undersigned certifies that the above is a true and accurate report of the findings of this Laboratory.

Analyst

GeoSyntec Consultants

Method:

EPA Method(s) 200.8

Date Completed:

9/29/98

Matrix: Units: Soil Extract mg/Kg

Extractable Metals

Client <u>Sample ID</u>	ToxSean <u>Lab ID</u>	<u>Analyte</u>	Sample <u>Value</u>	Reporting <u>Limit</u>
SV2910-12071598	16324-09	Cadmium	ND	0.1
		Lead	ND	0.1
SV2812-16071698	16324-10	Cadmium	ND	0.1
·		Lead	ND	0.1
SV071698-Dup	16324-11	Cadmium	ND	0.1
		Lead	ND	0.1
SV26072098	16324-12	Cadmium	ND	0.1
		Lead	ND	0.1

GeoSyntec Consultants

Method:

EPA Method(s) 200.8

Date Completed: Matrix:

9/29/98

Units:

Soil Extract mg/Kg

Iron/Manganese

ToxScan <u>Lab ID</u>	<u>Analyte</u>	Sample <u>Value</u>	Reporting <u>Limit</u>
16324-09	Cadmium	ND	0.1
	Iron	120	0.1
	Lead	0.36	0.1
	Manganese	33	0.1
16324-10	Cadmium	ND	0.1
	Iron	26	0.1
	Lead	ND	0.1
	Manganese	ND	0.1
16324-11	Cadmium	ND	0.1
	Iron	28	0.1
	Lead	ND	0.1
	Manganese	ND	0.1
16324-12	Cadmium	ND	0.1
	Iron	34	0.1
	Lead	0.14	0.1
	Manganese	ND	0.1
	<u>Lab ID</u> 16324-09 16324-10	Lab ID Analyte 16324-09 Cadmium Iron Lead Manganese 16324-10 Cadmium Iron Lead Manganese 16324-11 Cadmium Iron Lead Manganese 16324-12 Cadmium Iron Lead Manganese	Lab ID Analyte Value 16324-09 Cadmium ND Iron 120 Lead 0.36 Manganese 33 16324-10 Cadmium ND Iron 26 Lead ND Manganese ND 16324-11 Cadmium ND Iron 28 Lead ND Manganese ND 16324-12 Cadmium ND Iron 34 Lead 0.14

GeoSyntec Consultants

Method:

EPA Method(s) 200.8

Date Completed:

9/29/98

Matrix:

Soil Extract

Units:

mg/Kg

Bound Organic Metals

Client <u>Sample ID</u>	ToxScan <u>Lab ID</u>	<u>Analyte</u>	Sample <u>Value</u>	Reporting <u>Limit</u>
SV2910-12071598	16324-09	Cadmium	ND	0.1
		Lead	ND	0.1
SV2812-16071698	16324-10	Cadmium	ND	0.1
		Lead	ND	0.1
SV071698-Dup	16324-11	Cadmium	ND	0.1
		Lead	ND	0.1
SV26072098	16324-12	Cadmium	ND	0.1
		Lead	ND	0.1

GeoSyntec Consultants

Method:

Plumb

Date Analyzed:

August 3 - September 8, 1998

ToxScan Number: 16324

Matrix:

Sediment

Client Sample ID:

SV2910-12071598

Client Site ID:

ToxScan Lab ID:

T-16324-05A

Phi mm	INTERVAL WT (gm)	INTERVAL (%)	CUMULATIVE (%)
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.13	0.3	0.3
-1 4-2	0.08	0.2	0.5
0 2-1	0.16	0.4	0.9
1 1-0.5	2.26	5.3	6.2
2 0.5-0.25	12.57	29.4	35.6
3 0.25-0.125	16.85	39.5	75.1
4 0.125-0.062	8.01	18.8	93.9
5 0.062-0.031	1.23	2.9	96.7
6 0.031-0.016	0.41	1.0	97.7
7 0.016-0.008	0.29	0.7	98.4
8 0.008-0.004	0.16	0.4	98.7
9 0.004-0.002	0.08	0.2	98.9
>9 < 0.002	0.45	1.1	100
,	total wt	coarse wt	fine wt
	42.7	40.1	2.6
•	% sand	% silt	% clay
	93.9	4.9	1.3

GeoSyntec Consultants

Method:

Plumb

Date Analyzed:

August 3 - September 8, 1998

ToxScan Number: 16324

Matrix:

Sediment

Client Sample ID:

SV2812-16071698

Client Site ID:

ToxScan Lab ID:

T-16324-06A

<u>Phi</u>	mm	INTERVAL WT (gm)	INTERVAL (%)	CUMULATIVE (%)
·				
<-5	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16-8	0.00	0.0	0.0
-2	8- 4	1.33	3.2	3.2
-1	4-2	0.85	2.1	5.3
0	2- 1	1.43	3.5	8.7
1	1-0.5	6.81	16.5	25.3
2	0.5-0.25	19.83	48,1	73.3
3	0.25-0.125	8.76	21.2	94.5
4	0.125-0.062	0.86	2.1	96.6
5	0.062-0.031	0.25	0.6	97.2
6	0.031-0.016	0.19	0.5	97.7
7	0.016-0.008	0.21	0.5	98.2
8	0.008-0.004	0.12	0.3	98.5
9	0.004-0.002	0.09	0.2	98.7
>9	< 0.002	0.54	1.3	100
		total wt	coarse wt	fine wt
		41.3	39.9	1.4
		% sand	% silt	% clay
		96.6	1.8	1.5

GeoSyntec Consultants

Method:

Plumb

Date Analyzed:

August 3 - September 8, 1998

ToxScan Number: 16324

Matrix:

Sediment

Client Sample ID:

SV071698-Dup

Client Site ID:

ToxScan Lab ID:

T-16324-07A

Phi mm	INTERVAL WT (gm)	INTERVAL (%)	CUMULATIVE (%)
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	3.01	7.0	7.0
-1 4-2	1.30	3.0	10.0
0 2-1	2.20	5.1	15.2
1 1-0.5	7.09	16.5	31.7
2 0.5-0.25	19.35	45.1	76.8
3 0.25-0.125	7.91	18.4	95.2
4 0.125-0.062	0.76	1.8	97.0
5 0.062-0.031	0.20	0.5	97.5
6 0.031-0.016	0.21	0.5	98.0
7 0.016-0.008	0.16	0.4	98.3
8 0.008-0.004	0.13	0.3	98.6
9 0.004-0.002	0.06	0.1	98.8
>9 < 0.002	0.53	1.2	100
	total wt	coarse wt	fine wt
	42.9	41.6	1.3
	% sand	% silt	% clay
	97.0	1.6	1.4

Client: Method: GeoSyntec Consultants

Plumb

Date Analyzed:

August 3 - September 8, 1998

ToxScan Number: 16324

Matrix:

Sediment

Client Sample ID:

SV26072098

Client Site ID:

ToxScan Lab ID:

T-16324-08A

<u>Phi mm</u>	INTERVAL WT (gm)	INTERVAL (%)	CUMULATIVE (%)
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	8.39	18.9	18.9
-1 4-2	0.22	0.5	19.4
0 2-1	0.31	0.7	20.1
1 1-0.5	2,23	5.0	25.1
2 0.5-0.25	10.95	24.6	49.7
3 0.25-0.125	13.97	31.4	81.1
4 0.125-0.062	5.39	12.1	93.2
5 0.062-0.031	0.76	1.7	94.9
6 0.031-0.016	0.46	1.0	95.9
7 0.016-0.008	0.33	0.8	96.7
8 0.008-0.004	0.31	0,7	97.4
9 0.004-0.002	0.14	0.3	97.7
>9 < 0.002	1.02	2.3	100
	total wt	coarse wt	fine wt
	44.5	41.5	3.0
	% sand	% silt	% clay
	93.2	4.2	2.6

GeoSyntec Consultants

Method:

EPA Method(s) 160.3

ToxScan Number: T-16324

Date Completed:

8/26/98

Matrix:

Soil

Units:

Percent

Client Sample ID	ToxScan <u>Lab ID</u>	<u>Analyte</u>	Wet Wt. Sample <u>Value</u>	Wet Reporting <u>Limit</u>
SV2910 - 12071598	16324-05	Percent Solids	83	0.10
SV2812 - 16071698	16324-06	Percent Solids	82	0.10
SV071698 - Dup	16324-07	Percent Solids	84	0.10
SV26072098	16324-08	Percent Solids	80	0.10

GeoSyntec Consultants

Method:

EPA Method(s) 9045B

ToxScan Number: T-16324

Date Completed:

9/3/98

Matrix:

Soil

Units:

units

Client Sample ID	ToxScan <u>Lab ID</u>	Analyte	Sample <u>Value</u>	Reporting <u>Limit</u>
SV2910 - 12071598	16324-05	рН	7.3	0.10
SV2812 - 16071698	16324-06	pН	6.6	0.10
SV071698 - Dup	16324-07	pН	6.0	0.10
SV26072098	16324-08	рĦ	6.2	0.10

GeoSyntec Consultants

Method:

EPA Method(s) 200.8

Date Completed:

9/29/98

Matrix: Units:

Soil Extract

mg/Kg

Residual Metals

Client Sample ID	ToxScan <u>Lab ID</u>	<u>Analyte</u>	Sample <u>Value</u>	Reporting <u>Limit</u>
SV2910-12071598	16324-09	Cadmium	ND	0.1
		Lead	2.2	0.1
SV2812-16071698	16324-10	Cadmium	ND	0.1
		Lead	0.96	0.1
SV071698-Dup	16324-11	Cadmium	ND	0.1
		Lead	0.87	0.1
•				
SV26072098	16324-12	Cadmium	ND	0.1
•		Lead	1.6	0.1

ToxScan Number: T-16324

ζ.

GeoSyntec Consultants

Method:

EPA Method(s) 6020

Date Completed:

9/10/98

Matrix:

Soil

Units:

mg/Kg

Total Metals

Client Sample ID	ToxScan <u>Lab ID</u>	<u>Analyte</u>	Wet Wt. Sample <u>Value</u>	Wet Reporting <u>Limit</u>
SV2910 - 12071598	16324-05	Cadmium	ND	0.10
		Lead	2.8	0.10
SV2812 - 16071698	16324-06	Cadmium	ND	0.10
		Lead	1.9	0.10
SV071698 - Dup	16324-07	Cadmium	ND	0.10
		Lead	2.3	0.10
SV26072098	16324-08	Cadmium	ND	0.10
		Lead	4.1	0.10

XPLANATION OF ACRONYMS FOR PROJECT # T-16324

ollowing is a glossary for acronyms that may be used in this report.

eviation	Definition
	Laboratory Control Sample
	Matrix Spike
)	Matrix Spike Duplicate
	Not Applicable
	None Detected
	Replicate
	Relative Percent Difference
1	Standard Reference Material
	Total Organic Carbon

LABORATORY METHOD BLANK SUMMARY

Applicable Matrix:

Sediment

Total Metals

		Reporting Limit	EPA Method
<u>Analyte</u>	Amount	mg/L	<u>Number</u>
Cadmium	ND	0.10	6020
Iron	ND	1.0	7380
Lead	ND	0.10	6020
Manganese	ND	0.10	6020

LABORATORY PRECISION SUMMARY:

Matrix: Soil

Analyte	REP 1	REP 2	<u>Units</u>	<u>RPD</u>
pН				
16324-08	6.20	6.19	units	0

Concentrations of the following are in mg/Kg

SRM SUMMARY:

Matrix: Sediment

Total Metals

	Amount		Corrected		Certified	%
<u>Analyte</u>	Found	Dilution	<u>Value</u>	<u>SRM</u>	<u>Value</u>	Recovery
Cadmium	0.0136	20	0.272	MESS-2	0.240	114
Lead	0.955	20	19.1	MESS-2	21.9	87

Concentrations of the following are in ug/L

SRM SUMMARY:

Matrix: Water

Total Metals

Analyte	Amount <u>Found</u>	<u>Dilution</u>	Corrected <u>Value</u>	<u>SRM</u>	Certified <u>Value</u>	% <u>Recovery</u>
Cadmium	24.0	5	120	ERA 9977	120	100
Iron	676	1	676	ERA 9977	667	101
Lead	128	5	641	ERA 9977	660	97
Manganese	18.6	5	93.0	ERA 9977	100	93

ERA 9977 = Environmental Resource Associates, WasteWatR Lot No. 9977

APPENDIX E

GROUNDWATER SAMPLING LOGS

Well ID: Performed by: P. Botek/J. Latimer Date: 7/15/98

GW31071598 Sample ID:

	Sampling Information										
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
830	X										Turbid
1225		X			25.0	0.51	6.27	-110	NR	110.0	Slightly turbid
1530		X			20.7	0.07	6.20	-90	NR	325.0	Turbid
1540		X			21.2	0.36	6.29	-111	NR	45.0	Clear
1550		X			21.5	0.50	6.30	-114	NR	NR	Clear
1552			X								
1605				X			,			· · · · · · · · · · · · · · · · · · ·	

	Calibration & Checks for YSI Monitor											
When last checked? Temp. (°C) ATC (enter only if calibration performed now)												
pН	7/15/98	22.4	Yes/No	pH 4: 4.00 pH 7: 7.00 pH 10: 10.00								
Conductivity	7/15/98	22.4	Yes / No	1,000 uS/cm fluid reads 1,170								
Redox Potential	7/15/98	22.4	N/A	+231 mv Zoebell solution reads +222								

QA/QC Information	Miscellaneous					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.		735	-	9.42	-	
2.		1155	NR	NR	280 ml/min	
3.		1605	NR	9.55	NR	

Notes:

Depth to bottom: 15 ft below ground surface (bgs)

Screened interval: 5 - 15 ft bgs

Set pump intake at 10 ft bgs

Set flow to 280 ml/min; cannot reduce flow any further and sustain yield.

Pump fails at 0855 - reset controller and re-start at 0900; pump fails at 1005 - reset controller and re-start at 1013; pump fails at 1015 -

v new pump at 1145 and resume purge; pump continues to fail. Turn off pump at 1240 due to high pump temperature; resume

e at 1300; pump shut off at 1330 due to high pump temperature. Re-start purge at 1510.

NR = Not recorded

Well ID: 32 Date: 7/15/98 Performed by: P. Botek/J. Latimer
Sample ID: GW32071598

		h · ·				Sam	pling In	format	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
740	X			in the second							Turbid
820		X		; ;	18.7	0.34	5.85	-206	NR	87.4	Clear
900		X			19.3	0.35	5.84	-230	NR	37.5	Clear
910		X			19.1	0.39	5.85	-Ž10	NR	28.3	Clear
925		X			19.1	0.36	6.31	NR	0.63	23.5	Clear
945		X			19.2	0.35	5.94	NR	0.31	19.5	Clear
1000		X			19.1	0.35	5.94	NR	0.28	18.5	Clear

Calibration & Checks for YSI Monitor										
	(enter only if calibration performed now)									
рH	7/15/98	22.4		pH 4: 4.00 pH 7: 7.00 pH 10: 10.00						
Conductivity	7/15/98	22.4	Yes / No	1,000 uS/cm fluid reads 1,170						
Redox Potential	7/15/98	22.4		+231 mv Zoebell solution reads +222						

	QA/QC Information	Miscellaneous				
	Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate
1.	Matrix Spike	GW32071598MS	740	NR	9.79	225 ml/min
2.	Matrix Spike Duplicate	GW32071598MSD	1110	NR	9.81	NR
J						

Notes:	
Depth to bottom: 30 ft below ground surface (bgs)	Screened interval: 20 - 30 ft bgs
Set pump intake at 25 ft bgs	30 H 0g3
Set flow to 225 ml/min at 0740	
NR = Not recorded	

Well ID:	32	Date:	7/15/98	Performed by: P. Botek/J. Latimer	
Sample ID:	GW3207159	8		2. Deteller Latinici	

Sampling Information											
Time	Start Purge			End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
1015		X			19.1	0.22	5.93	NR	0.30	16.5	Clear
1030			X	1	19.2	0.24	5.94	NR	0.28	12.6	Clear
1110				X					0.20	12.0	Cical
		Γ					-				
		Γ							-		
	1				w. *** **					·	
					· -	γ					
		Ц.						i	ľ		Min.

Calibration & Checks for YSI Monitor										
When last checked? Temp. (°C) ATC (enter only if calibration performed now)										
рН	7/15/98	22.4		pH 4: 4.00 pH 7: 7.00 pH 10: 10.00						
Conductivity	7/15/98	22.4		1,000 uS/cm fluid reads 1,170						
Redox Potential	7/15/98	22.4		+231 mv Zoebell solution reads +222						

QA/QC Informatio	Miscellaneous				
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate
I. Matrix Spike	GW32071598MS	740	NR	9.79	225 ml/min
2. Matrix Spike Duplicate	GW32071598MSD	1110	NR	9.81	NR
				17	

Notes:				
Depth to bottom: 30 ft below ground surface (bgs)	Screened inten	val: 20 - 30 ft bgs		
Set pump intake at 25 ft bgs	bereened interv	vai. 20 - 30 it ogs		
Set flow to 225 ml/min at 0740				-
NR = Not recorded				
	W 1 Ma		<u> </u>	

Well ID:	33	Date:	5/19/99	Performed by: P. Botek	
Sample ID:	GW3305	1999	. <u> </u>		

Sampling Information											
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
1115	X				· · · · · · · · · · · · · · · · · · ·						
1240		X			13.6	1.47	5.2	-112	2.7	59.5	Cloudy
1250		X			13.6	1.46	5.4	-238	1.47	NR	Cloudy
1300		X			13.5	1.45	5.4	-264	1.26	NR	Cloudy
1310		X			13.4	1.43	5.4	-316	1.11	NR	Cloudy
1320		X			13.3	1.42	5.1	-340	1.02	NR	Cloudy
1330		X			13.3	1.42	5.4	-329	0.9		Cloudy
1345		X			13.3	1.42	5.4	-325	1.65		Cloudy
			X			•					

Calibration & Checks for YSI Monitor									
·	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)					
pН		N/A	Yes / No						
Conductivity		N/A	Yes / No	1,000 uS/cm fluid reads					
Redox Potential		N/A		+231 mv Zoebell solution reads					

QA/QC Information	Miscellaneous				
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate
1.		1105	N/A	4.05	NA
2.		1200	N/A	4.26	NA
3.		1300	N/A	4.11	NA

Notes:	
Field instrument was calibrated with one point calibration solution provided	ed by the manufacturer prior to use
Pump intake set at 8 ft bgs	- Control of the cont

Well ID:	34	Date:	5/20/99	Performed by: P. Botek	
Sample ID:	GW34052	099		<u> </u>	

	Sampling Information										
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
900	X									,	Cloudy
1330		X			21		5.86	2750		1400	Very Turbid
1320		X	X		21		5.81	2750		1700	Very Turbid
1330		X		X	21		5.80	2710		1100	Very Turbid
									· · · · · · · · · · · · · · · · · · ·	· · · · · ·	
·	-	-	,			227.00					
_											

Calibration & Checks for YSI Monitor									
	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)					
pН			Yes / No	рН 4: рН 7: рН 10:					
Conductivity			Yes/No	1,000 uS/cm fluid reads					
Redox Potential			N/A	+231 mv Zoebell solution reads					

QA/QC Information	Miscellaneous				
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate
1.					
2.					
3.					

Notes:

Field parameter meter was not functioning likely due rainfall

Pump continuously stopped pumping randomly, every restart of pump would cause large quantities of sediments to become suspended

in effluent. Malfuntions were due to both generator and submersible pump

Lots of effluent were retained and pH and conductivity readings were obtained on 21 May 1999 using alternate field instruments.

Aliquots of effluent were also submitted to Martel Laboratory Inc. for turbidity readings

Well 2)

Date: 1/26/99

Performed by: P. Botek \ D. Scotti

	<u> </u>	San	pling In	formati	on		
End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
	12.2	.362	6.4	-14	13.1	<10	Clear
	12.1	.351	6.4	-50	14.4	<10	Clear
_	12.2	.360	6.4	-66	12.2	<10	Clear
	12.0	357	6.4	-78	11.35	<10	Clear
	12.2	.355	6.4	-91	11.18	<10	Clear
	12.3	.386	6.4	-91	10.94	<10	Clear
	12.2	.380	6.4	-87	11.12	<10	Clear
	12.3	.380	6.4	-86	10.95	<10	Clear
							Clear

Calibration & Checks for YSI Monitor									
checked?	checked? Temp. (°C) ATC (enter only if calibration performed now)								
@ 0615	18.3	Yes / No	pH 4: 4.0 pH 7: 7.0 pH 10: 9.94						
5/99 @ 0615	16.4	Yes / No	1.00 uS/cm fluid reads 0.815						
5/99 @ 0615	16.4	N/A	+231 mv Zoebell solution reads +249						

QA/QC Informatio	n	Miscellaneous				
blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
	GW-MS-012699	900		6.73		
	GW-MSD-102699	945	<10	6.69	370 ml/min.	
		1100	<10	6.73	300 ml/min.	

Laboratory Analytical Parameters	
Analysis, Total Lead and Cadmim, Dissolved Lead and Cadmium, Gamma Spectroscopy	

Notes	
om TOC.	
or was used to monitor conductivity because of air	r in the flow-thru cell caused fluctuating
asure D.O. and turbidity.	1.72

Well ID: BR Date:

Performed by: P. Botek/ J. Latimer 7/9/98 Sample ID: **GWBR070998**

	F		17-			Sam	pling In	format	ion		
Time	Start Purge		Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	рН (АТС)	Redox (+/-mv)	D.O. (ppm)	Turbidity (Appearance of Water
1420	X							ī		!	Clear
1450	general A	X			14.9	1.82	6.69	+105	NR	5.7	Clear
1530	!	X			14.8	1.85	6.76	+108	NR	4.0	Clear
1545		X			14.9	1.83	6.76	+109	NR	3.8	Clear
1555		X			14.8	1.86	NR	+109	0.90	1.3	Clear
1605		X			14.8	1.87	NR	+108	0.95	2.1	Clear
1615		X			14.9	1.83	NR	+108	0.93	0.5	Clear
1616			X						-		
				X					***************************************		

Calibration & Checks for YSI Monitor									
	When last checked? Temp. (°C) ATC (enter only if calibration performed now)								
pН	7/9/98	21.4	Yes / No	pH 4: 4.0 pH 7: 7.00 pH 10: 9.96					
Conductivity	7/9/98	21.4		1,000 uS/cm fluid reads 991					
Redox Potential	7/9/98	21.4		+231 mv Zoebell solutio n reads +234					

QA/QC Information	Miscellaneous				
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate
1.		1415	-	5.25	-
2.		1430	NR	NR	275 ml/min
3.		1630	NR	5.28	NR

Notes:	
Depth to bottom: 38.85 ft below ground surface (bgs)	
Screened interval: 32.85 - 38.85 ft bgs	
Set nump intake at 36 ft bgs	
Not recorded	

Well ID: JD Date: 7/8/98 Performed by: P. Botek/D. Scotti
Sample ID: GWJD070898

		_	_			Sam	pling In	format	ion		
Time		Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.Ö. (ppm)	Turbidity (NTU)	Appearance of Water
850	X								41-7	(1110)	Clear
910		X			17.0	0.220	3.54	+397	NR	NR	Clear
925		X			17.4	0.225	3.57	+398	NR	11.5	
935		X			17.5	0.610	3.57	+398	NR		Clear
1015		X			17.5	0.315	NR			10.5	Clear
1025		X						+398	2.58	4.45	Clear
				_	17.2	0.320	NR	+398	2.70	3.30	Clear
1035	-	X			17.0	0.369	NR	+398	2.63	2.60	Clear
1050			X								-
(,	T			X			·				

	Calibration & Checks for YSI Monitor											
	When last checked?			(enter only if calibration performed now)								
рН	7/8/98	21.6		pH 4: 4.0 pH 7: 7.00 pH 10: 9.79								
Conductivity	7/8/98	21.6		1,000 uS/cm fluid reads 928								
Redox Potential	7/8/98	21.6		+231 mv Zoebell solutio n reads +229								

QA/QC Information	Miscellaneous				
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate
2		832	•	7.78	-
3.		853	NR	NR	500 ml/min
		855	NR	NR	350 ml/min

Notes:	
Depth to bottom: 27.44 ft below ground surface (bgs)	Screened interval: 17.44 - 27.44 ft bgs
Set pump intake at 22 ft bgs	27.44 It bgs
Set flow to 300 ml/min at 0856	
Depth to water: 7.83 at 1057	
Vot recorded	

Well ID: JS Date: 7/8/98 Performed by: P. Botek/D. Scotti

Sample ID: GWJS070898

						Sam	pling In	format	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	рН (АТС)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
1005	X										
1024		X			18.9	0.040	5.32	+195	NR	NR	Brown, turbid
1034		X			18.8	0.068	5.27	+210	NR	NR	Clearing
1103		X			19.1	0.075	5.27	+205	NR	NR	Clearing
1120		X			19.0	0.079	NR	+220	2.10	40.3	Clear
1135		X			18.8	0.086	NR	+247	2.35	29.4	Clear
1150		X			18.7	0.087	NR	+268	2.28	20.7	Clear
1205		X			18.6	0.090	NR	+273	2.84	15.6	Clear
		X			18.7	0.090	NR	+276	2.93	23.0	Clear

	Calibration & Checks for YSI Monitor											
	(enter only if calibration performed now)											
рН	7/8/98	21.5	Yes / No	pH 4: 4.02 pH 7: 7.02 pH 10: 10.01								
Conductivity	7/8/98	21.5	Yes / No	1,000 uS/cm fluid reads 1,000								
Redox Potential 7/8/98 21.5 N/A +231 mv Zoebell solution reads +230												

QA/QC Information		Miscellaneous					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate		
1.		835	-	7.68	-		
2.		1013	NR	7.98	300 ml/min		
3.		1220	NR	7.65	NR		

Notes:

Depth to bottom: 17 ft below ground surface (bgs)

Screened interval: 7 - 17 ft bgs

Set pump intake at 10 ft bgs (cannot deploy any deeper)

Set flow to 300 ml/min at 1008

Organic debris (roots) on pump when pull pump

Not recorded

Sampling Information

Performed by: P. Botek/D. Scotti

Time	Start Purge	Readings		End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)		nce of Water
1225	-		X	47						Clear		
1230	1_			X								
	ļ	_	_				<u> </u>			· · · · · · · · · · · · · · · · · · ·		
		<u> </u>	_		Co.,							
	<u> </u>											
		4										
						Calibration of	& Checl	s for Y	SI Monito	r		
			Wh	en l	ast checked?	Temp. (°C)	ATC	(enter only	y if calibration	performed nov	w)	
pН					7/8/98	21.5	Yes / No	pH 4: 4.0		7.02	pH 10: 10.0	1
Conductivity				_	7/8/98	21.5	Yes / No	1,000 uS/	cm fluid reads		•	
Redox Potentia	ıl				7/8/98	21.5	N/A		Zoebell solution			
				OA	/QC Info	ormation				Miscel	aneous	
		·							<u> </u>		Depth to	
Desc	ript	ion	(i.e	., bl	ank, duplicate	e, etc.)	Samp	le ID	Time	Turbidity	Water	Purge Rate
1.									835	•	7.68	-
2.									1013	NR	7.98	300 ml/min
3.									1220	NR	7.65	NR
								Charle T.				<u> </u>
Notes:												
Depth to botton	n: 1′	7 ft	belo	ow g	round surfac	e (bgs)	Screened in	terval: 7 -	17 ft bgs			
Set pump intak										····		
Set flow to 300						- Lot						
Organic debris	(roo	ts) (on p	umj	when pull p	ump					· .	
Not recor	ded											
							-					,

Well ID:

Sample ID:

JS

GWJS070898

Date:

7/8/98

Date: _	7/13/98	Performed by:	Latimer	 	
0071398					
	Sam	pling Informat	ion		

	Swiii	pling In				
Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
						Slight rust color
20.9	0.90	5.21	+128	NR	97	Clear - rusty tint
20.0	0.18	5.16	+143	NR	77	Clear - rusty tint
19.8	0.22	5.22	+133	NR	51.5	Clear
19.7	1.80	5.22	+125	NR	36.0	Clear
19.7	1.85	5.24	+119	0.99	32.5	Clear
19.4	1.10	5.23	+121	0.27	28.0	Clear
			-			

C	Calibration & Checks for YSI Monitor											
1 last checked?	Temp. (°C)	AŤĈ	(enter only if calibration performed nov	alibration performed now)								
7/13/98	22.8	Yes / No	pH 4: 4.00 pH 7: 7.00	pH 10: 9.98								
7/13/98	22.8	Yes / No	1,000 uS/cm fluid reads 1,210									
7/13/98	22.8	N/A	+231 mv Zoebell solution reads +232									

A/QC Information			Miscellaneous					
blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate			
		845	-	7.92	-			
		900	NR	NR	250 ml/min			
		1230	NR	7.96	NR			

v ground surface (bgs)	Screened interval: 14 - 24 ft bgs	
3 00		
5; replace generator and res	ume purge at 1045.	

Date: 7/13/98 Performed by: P. Botek/J. Latimer

D071398

Someting Information

_	Sampling Information											
andrino our	Temp. (°C)	Conductivity (mS/cm) (ATC)	рН (АТС)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water					
-	20.0	0.30	NR	+123	NR	26.5	Clear					
	19.9	0.62	NR	+124	0.25	23.5	Clear					
	19.5	0.39	NR	+125	0.30	18.8	Clear					
_							Ćlear					
₹												
				1 - 								

C	Calibration & Checks for YSI Monitor											
last checked? Temp. (°C) ATC (enter only if calibration performed now)												
7/13/98	22.8	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 9.98									
7/13/98	22.8	Yes / No	1,000 uS/cm fluid reads 1,210									
7/13/98	22.8	N/A	+231 mv Zoebell solution reads +232									

A/QC Information		Miscellaneous						
blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate			
		845	-	7.92	-			
		900	NR	NR	250 ml/min			
		1230	NR	7.96	NR			

v ground surface (bgs)	Screened interval: 14 - 24 ft bgs
200	
5; replace generator and resi	ime purge at 1045.

Well ID: NS Date: 7/13/98 Performed by: P. Botek/J. Latimer

Sample ID: GWNS071398

	Sampling Information											
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water	
845	X										Very cloudy	
900		X			23.6	0.29	5.77	+9	NR	22.5	Clear	
925		X			23.6	0.06	5.85	-12	NR	13.8	Clear	
950		X			22.6	0.07	5.85	+53	NR	4.0	Clear	
1005		X			23.5	0.06	5.86	+108	1.24	4.8	Clear	
1020		X			24.8	0.11	NR	+150	1.19	4.6	Clear	
1030		X			25.2	0.21	NR	+178	1.14	4.0	Clear	
1035			X							,.	Clear	
15				X				» •			<u> </u>	

	Calibration & Checks for YSI Monitor											
When last checked? Temp. (°C) ATC (enter only if calibration performed now)												
pН	7/13/98	21.0	Yes/No	pH 4: 4.00 pH 7: 7.00 pH 10: 9.97								
Conductivity	7/13/98	21.0	Yes / No	1,000 uS/cm fluid reads 1,020								
Redox Potential	7/13/98	21.0		+231 mv Zoebell solution reads +246								

QA/QC Information	Miscellaneous					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.		840	-	8.71	-	
2.		855	NR	NR	280 ml/min	
3.						

Notes:		
Depth to bottom; 16,5 ft below ground surface (bgs)	Screened interval: 6.5 - 16.5 ft bgs	
Set pump intake at 14.5 ft bgs		
Set flow to 280 ml/min at 0855		
NR = Not recorded		

Well ID: OD Date: 7/14/98 Performed by: P. Botek/J. Latimer

Sample ID: GWOD071498

	Sampling Information											
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	рН (АТС)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water	
735	X										Slightly turbid, organic odor	
800		X		1	17.5	9.13	4.03	-51	NR	59.5	Clear, organic odor	
820		X			17.4	7.64	4.00	-67	NR	32.1	Clear, strong organic odor	
850		X			17.3	6.45	3.99	-67	NR	16,2	Clear, strong organic odor	
905		X			17.3	6.13	3.99	-72	NR	10.9	Clear, strong organic odor	
925		X		-	17.4	4.50	3.96	NR	0.98	8.8	Clear, strong organic odor	
940		X	Г		17.4	4.21	3.93	NR	0.55	6.4	Clear, strong organic odor	
1000		X		T	17.5	5.40	3.93	NR	0.52	4.0	Clear, strong organic odor	

	Calibration & Checks for YSI Monitor												
When last checked? Temp. (°C) ATC (enter only if calibration performed now)													
pН	7/14/98	20.2	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 10.00									
Conductivity	7/14/98	20.2	Yes / No	1,000 uS/cm fluid reads 1,130									
Redox Potential	7/14/98	20.2	N/A.	+231 mv Zoebell solution reads +229									

	QA/QC Information	Miscellaneous				
	Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate
1.			730		8.53	-
2.			745	NR	NR	250 ml/min
3.			1020	NR	8.52	NR

Notes:			
Depth to bottom: 34.7 ft below ground surface (bgs)	Screened interval: 9.7 - 34.7 ft bgs		
Set pump intake at 25 ft bgs			
Set flow to 250 ml/min at 0745			
NR = Not recorded			
		·	

Performed by: P. Botek/J. Latimer

Date:

7/14/98

Well ID:

OD

Sample ID	:	G'	W(OD	071498	-			- · · · · · · · · · · · · · · · · · · ·		*************************************	
						Sam	pling Ir	format	ion			*
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appeara	nce of Water
1010	Ť	X			17.5	5.38	3.93	NR	0.60	4.7	Clear, strong	
1012			X						·		Clear, strong	
1025	1			X								
			Γ					Description of the second of t				
		Π				1001 00 0 00 00 00						171 <u> </u>
	T				_							
		_	7	_							·	<u> </u>
					C	Calibration &	& Check	s for Y	SI Monito	r		
			Wh	ien l	ast checked?	Temp. (°C)	ATC	(enter only	if calibration	performed no	w)	····
pН					7/14/98	20.2	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 10.00			10	
Conductivity					7/14/98	20.2	Yes / No	1,000 uS/cm fluid reads 1,130			• • • • • • • • • • • • • • • • • • • •	
Redox Potenti	al				7/14/98	20.2	N/A	+231 mv Zoebell solution reads +229				
				$\overline{\mathbf{Q}A}$	/QC Info	ormation	 -			Miscel	laneous	
<u> </u>		•									Depth to	
	cript	ion	(1,e	., bla	ank, duplicate	e, etc.)	Samp	le ID	Time	Turbidity	Water	Purge Rate
1. 2.									730		8.53	-
3.									745	NR	NR	250 ml/min
J.			<u></u>						1020	NR	8.52	NR
Notos	<u> </u>											
Notes:			٠.				_					
Depth to botton Set pump intak	m: 3	4./1	t be	wols	ground surfa	ice (bgs)	Screened in	terval: 9.7	- 34.7 ft bgs			
Set flow to 250												
NR = Not reco			ai (J / 43	<u>.</u>							
										 		
					· <u>,;;•;;•;;•;</u>							···.
*		-			T					<u></u>		

7/13/98 Performed by: P. Botek/J. Latimer Well ID: OS Date:

Sample ID: **GWOS071398**

						Sam	pling In	format	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	рН (АТС)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
1315	X										
1330		X			17.6	2.78	4.74	+128	NR	34.5	Clear
1345		X			18.0	2.95	4.61	+76	NR	25.0	Clear
1400		X			19.6	2.79	4.57	+61	NR	26.5	Clear
1415		X			19.7	3.74	4.54	+47	NR	24.4	Clear
1435		X			19.2	4.05	4.51	+31	NR	20.5	Clear
1450		X			19.4	4.20	4.50	+22	NR	20.5	Clear
1510		X			19.1	4.37	4.48	+7	NR	14.8	Clear
14-7		X			19.4	4.45	NR	-1	1.17	10.5	Clear

Calibration & Checks for YSI Monitor										
,	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)						
pН	7/13/98	21.0	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 9.97						
Conductivity	7/13/98	21.0	Yes / No	1,000 uS/cm fluid reads 1,020						
Redox Potential	7/13/98	21.0	N/A	+231 mv Zoebell solution reads +246						

QA/QC Information	QA/QC Information					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
I.		1325	-	7.77	250 ml/min	
2.		1555	NR	7.72	NR	
3.						

Notes:		
Depth to bottom: 19 ft below ground surface (bgs)	Screened interval: 4 - 19 ft bgs	
Set pump intake at 16.5 ft bgs		
Set flow to 250 ml/min at 1325		
NR = Not recorded		

Well ID: OS Date: 7/13/98 Performed by: P. Botek/J. Latimer

Sample ID: GWOS071398

	Sampling Information										
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
1530		X			19.6	4.53	NR	- 5	0.50	13.9	Clear, yellow tint
1540		X			19.3	4.58	NR	-12	0.30	10.4	Clear, yellow tint
1550		X			19.2	4.66	NR	-14	0.38	11.8	Clear
1555	Ī		X								Clear
1605				X			÷				
									· · . · . ·		
								,			

Calibration & Checks for YSI Monitor										
	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)						
pН	7/13/98	21.0	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 9.97						
Conductivity	7/13/98	21.0	Yes / No	1,000 uS/cm fluid reads 1,020						
Redox Potential	7/13/98	21.0	N/A	+231 mv Zoebell solution reads +246						

QA/QC Information	Miscellaneous					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.	:	1325	-	7.77	250 ml/min	
2. 3.		1555	NR	7.72	NR	

Notes:		
Depth to bottom: 19 ft below ground surface (bgs)	Screened interval: 4 - 19 ft bgs	
Set pump intake at 16.5 ft bgs		
Set flow to 250 ml/min at 1325		
NR = Not recorded		

Well ID: OS Date: 9/24/98 Performed by: D.Scotti/B. Steier

Sample ID: GWOS092498

•						Sam	pling In	format	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	рН (АТС)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
906	X				16.2	1.18	4.32	+206	NR	NR	Brown, very turbid
915		X			16.7	1,23	4.30	+186	NR	NR	Brown, turbid
924		X			17.3	1.34	4.23	+87	NR	NR	Brown, less turbid
930		X			17.5	1.25	4.17	+74	NR	NR	Brown
940		X			18.3	0.96	4.13	+56	NR	26.5	Brown
953		X			19.1	1,16	4.14	+44	NR	20.8	Clear
1005		X			18.6	1.24	4.15	+23	NR	15.2	Clear
1017		X			19.2	1.22	4.12	+6	NR	12.5	Clear
16.7		X			19.4	1.20	4.11	+1	NR	9.5	Clear

Calibration & Checks for YSI Monitor										
	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)						
pН	9/24/98	8.2	Yes / No	pH 4: 4.01 pH 7: 7.02 pH 10: 9.98						
Conductivity	9/24/98	8.2	Yes / No	1,000 uS/cm fluid reads 1,064						
Redox Potential	9/24/98	8.2	N/A	+231 mv Zoebell solution reads +250						

QA/QC Information	QA/QC Information					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.		852	NR	8.79	NR	
2.		923	39.2	NR	600 ml/min	
3.		930	NR	8.88	200 ml/min	

Well ID: OS Date: 9/24/98 Performed by: D. Scotti/B. Steier

Sample ID: GWOS092498

						Sam	pling In	format	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	рН (АТС)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
1039		X			19.6	1.20	4.10	-5	NR	7.8	Clear, yellow tint
1050		X			20.0	1.33	NR	-11	5.0	NR	Clear, yellow tint
1101		X			20.0	1.33	NR	-15	5.4	8.2	Clear
1111		X			19.3	1.31	NR	-21	5.4	5.5	Clear
1139		X			19.4	6.59	NR	-25	3.7	14.0	Clear
1148		X			19.3	6.63	NR	-31	8.3	6.0	Clear
1158		X			19.2	6.58	NR	-36	12.5	4.9	Clear
1208		X	X		19.3	6.62	NR	-39	12.6	4.6	Clear
15,2				X							Clear

	C	alibration	& Check	ks for YSI Monitor				
	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)				
pН	9/24/98	8.2	Yes / No	pH 4: 4.01 pH 7: 7.02 pH 10: 9.98				
Conductivity	9/24/98	8.2	Yes / No	1,000 uS/cm fluid reads 1,064				
Redox Potential	9/24/98	8.2		+231 mv Zoebell solution reads +250				

QA/QC Information	QA/QC Information					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.		852	NR	8.79	NR	
2.		923	39.2	NR	600 ml/min	
3.		930	NR	8.88	200 ml/min	

Notes:

Depth to bottom: 19 ft below ground surface (bgs)

Screened interval: 4 - 19 ft bgs

Set pump intake at 17 ft bgs

Set flow to 200 ml/min at 0930; difficult to maintain constant flow, attempt to maintain flow at 200 ml/min

NR = Not recorded

0 generator fails; pump off; @ 1130 generator and pump on - turbid discharge

Well ID: SD Date: 7/9/98 Performed by: P. Botek/ J. Latimer

Sample ID: GWSD070998

						Sam	pling In	format	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (^o C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
840	X										Very Turbid
930		X			16.9	9.07	2.96	193		339	
1005		X			16.7	8.90	2.95	291		50	Slightly Turbid
1020		X			16.7	8.78	2.95	310		23	Slightly Turbid
1050		X			16.7	8.08	2.97	305		37	Slightly Turbid
1120		X			16.8	8.75	2.97	308		14	Clear
1130		X			16.7	8.79	2.96	310		12.2	Clear
1150		X			16.8	8.74	2.96	309	2. 3. 1.	12.7	Clear
11.24			X							•	Clear

	Calibration & Checks for YSI Monitor									
	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)						
pН	7/9/98	21.4	Yes / No	pH 4: 4.0 pH 7: 7.00 pH 10: 9.96						
Conductivity	7/9/98	21.4	Yes / No	1,000 uS/cm fluid reads 1034						
Redox Potential	7/9/98	21.4	N/A	+231 mv Zoebell solutio n reads +238						

QA/QC Information	QA/QC Information					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.		828		7.07		
2.		840			250 ml/min	
3.		1210		•		

Notes:	
Depth to bottom: 28.96 ft.	Orion 810 D.O. meter was not functioning due to broken connection
Screened interval: 16 - 28 ft.	between probe and display. Therfore, no D.O. data was obtained for well SD at this time.
Sample split w/ Foster Wheeler	

Performed by: P. Botek/ J. Latimer Well ID: SD 7/9/98 Date:

GWSD070998 Sample ID:

						Sai	npling I	nformati	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
840	X										Very turbid
930		X		T	16.9	9.07	2.96	+193	*	339	
1005		X			16.7	8.90	2.95	+291	*	50	Slightly turbid
1020		X		Π	16.7	8.78	2.95	+310	*	23	Slightly turbid
1050		X			16.7	8.08	2.97	+305	*	37	Slightly turbid
1120		X			16.8	8.75	2.97	+308	*	14	Clear
1130		X			16.7	8.79	2.96	+310	*	12.2	Clear

Calibration & Checks for YSI Monitor										
	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)						
pН	7/9/98	21.4	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 9.96						
Conductivity	7/9/98	21.4	Yes / No	1,000 uS/cm fluid reads 1,034						
Redox Potential	7/9/98	21.4	N/A	+231 mv Zoebell solution r n reads +238						

QA/QC Informati	QA/QC Information					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.		828	-	7.07	_	
2.		840	NR	NR	250 ml/min	
3.						

Notes:	
Depth to bottom: 28.96 ft below ground surface (bgs)	Screened interval: 16.96 - 28.96 ft bgs
Sample split w/ USEPA oversight contractor (Foster-Whe	
	tioning due to a broken connection between the probe and display; therefore,
no D.O. data could be obtained for well SD at this time.	part of the second seco
NR = Not recorded	

Well ID:		SD			Date:	7/9/98	Performed by: P. Botek/ J. Latimer						
Sample ID:		GV	VS)	D0	70998				,				
:						Sar	npling I	nformat	ion				
Time	ne		Conductivity (mS/cm) (ATC) 8.74	pH (ATC)	Redox (+/-mv) +309	D.O. (ppm)	Turbidity (NTU) 12.7	Appearance of Water					
1155			x								Clear		
1205				X	 								
			\dashv		·		·						
			-		•		-						
	1		1				k	l			<u> </u>		
						Calibration	& Chec	ks for Y	SI Monito	ř			
		1	Whe	en la	ast checked?	Temp. (°C)	ATC	(enter only i	f calibration pe	rformed now)			
pН					7/9/98	21.4	Yes / No	pH 4: 4.00	pH 7: 7.00	pH 10: 9.96			
Conductivity					7/9/98	21.4	Yes / No	1,000 uS/cm fluid reads 1,034					
Redox Potentia	l				7/9/98	21.4	N/A	1/A +231 mv Zoebell solution r n reads +238					
				O	A/OC İn	formation				Misce	llaneous	•	
Desc	ripti	ion (i.e.,		ınk, duplicate		Sam	ple ÎD	Time	Turbidity	Depth to Water	Purge Rate	
1.	-								828	•	7.07	-	
2.									840	NR	NR.	250 ml/min	
3.													
Notes:											· -		
Depth to botton	a: 28	3.96	ft b	elo	w ground sur	face (bgs)	Screened in	terval: 16.96	- 28.96 ft bgs				
						r (Foster-Wheele							
* Orion 810 dis	solv	ed o	ху	gen	(D.O.) meter	was not function	ing due to a	broken conn	ection between	the probe and	display; therei	fore,	
no D.O. data co	_												
NR = Not recor	ded												
													

Well ID: SS Date: 7/9/98 Performed by: P. Botek/ J. Latimer

Sample ID: GWSS070998

	· · · · · · · · · · · · · · · · · · ·	<u> </u>			7	Sam	pling In	format	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
900	X										Vey Turbid, Odor
950		X			19.4	0.13	3.85	-149		730	Very Turbid
1010		X			20.5	0.30	3.76	-155		250	Turbid
1025		X			19.8	0.16	5.89	-141		992	Turbid
1050		X			18.6	0.6	5.90	-102		207	Turbid
1110		X			18.0	0.80	5.89	-97		140	Turbid
1205		X			19.8	0.13		-88			

	Calibration & Checks for YSI Monitor											
	When last checked?	When last checked? Temp. (°C) A?		(enter only if calibration performed now)								
pН	7/9/98	18.0	Yes / No	pH 4: 4.0 pH 7: 7.00 pH 10: 9.96	- , .							
Conductivity	7/9/98	18.0	Yes / No	1,000 uS/cm fluid reads 0.991								
Redox Potential	7/9/98	18.0		+231 mv Zoebell solutio n reads +234								

QA/QC Information		Miscellaneous					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate		
1.		830		64.05			
2. 3.		910			275 ml/min		
J.							

Notes:	
Depth to bottom: 16.77 ft.	Well extremely turbid. Well was surged from 1225 to 1425 w\little improvement.
Screened interval: 6 -16 ft.	Screen is possibly Breached. Low flow purging resumed at 1430.
Pump intake set at 11.5 ft.	

Well ID: SS Date: 7/9/98 Performed by: P. Botek/ J. Latimer

Sample ID: GWSS071098

						Sar	npling I	nformati	ion		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
900	X									-	Vey turbid, odor
950		X			19.4	0.13	3.85	-149	NR	730	Very turbid
1010		X			20.5	0.30	3.76	-155	NR	250	Turbid
1025		X			19.8	0.16	5.89	-141	NR	992	Turbid
1050	•	X			18.6	0.60	5.90	-102	NR	207	Turbid
1110		X			18.0	0.80	5.89	-97	NR	140	Turbid
1205		Х			19.8	0.13	NR	-88	NR	NR	Turbid
				T							

Calibration & Checks for YSI Monitor											
When last checked? Temp. (°C) ATC (enter only if calibration performed now)											
pН	7/9/98	18.0	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 9.96							
Conductivity	7/9/98	18.0	Yes / No	1,000 uS/cm fluid reads 991							
Redox Potential	7/9/98	18.0	N/A	+231 mv Zoebell solution r n reads +234							

QA/QC Information	Miscellaneous					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate	
1.		830	-	6.05	-	
2.		910	NR	NR	275 ml/min	
3.						

Notes:

Depth to bottom: 16.77 ft below ground surface (bgs)

Screened interval: 6.77 -16.77 ft bgs

Pump intake set at 11.5 ft bgs

Well is extremely turbid. Decide to stop recording measurements and to surge the well. Well surged from 1225 to 1425

with little improvement. Screen is possibly breached. Low flow purging resumed at 1430. Abundant silt is still being pumped from

the well. Decide to purge the well for the rest of the day and to turn off the pump at the end of the day and resume purging tomorrow.

Not recorded

Well ID:

SS

Date:

7/10/98

Performed by: P. Botek/ J. Latimer

Sample ID: GWSS071098

		, <u>-</u>				Sar	npling I	nformati	on		
Time	Start Purge	Readings	Start Sample	End Sample	Temp. (°C)	Conductivity (mS/cm) (ATC)	pH (ATC)	Redox (+/-mv)	D.O. (ppm)	Turbidity (NTU)	Appearance of Water
848	X									-	Slightly turbid
920		X			17.3	4.37	5.55	+53	NR	25	Clear
950		X			20.5	4.20	5.51	+10	NR	95	Slightly turbid
1024		X			17.0	0.92	5.54	+26	NR	25	Clear
1115		X			17.7	0.99	5.52	+29	NR	5.9	Clear
1140		X			17.7	1.01	5.52	+34	NR	NR	Clear
1145			X								
1155				X							

Calibration & Checks for YSI Monitor										
	When last checked?	Temp. (°C)	ATC	(enter only if calibration performed now)						
pН	7/10/98	23.0	Yes / No	pH 4: 4.00 pH 7: 7.00 pH 10: 9.94						
Conductivity	7/10/98	23.0	Yes / No	1,000 uS/cm fluid reads 1,091						
Redox Potential	7/10/98	23.0	N/A	+231 mv Zoebell solution r n reads +216						

QA/QC Information		Miscellaneous					
Description (i.e., blank, duplicate, etc.)	Sample ID	Time	Turbidity	Depth to Water	Purge Rate		
1.		845	-	6.53	-		
2.		915	NR	NR	300 ml/min		
3.		1020	NR	6.82	500 ml/min		

Notes:

0950: Pumn stopped and restarted.

1020: Pump had stopped, flow rate increased to 500 ml/min may have caused variations in conductivity.

1040:Pump stepped down to 375 ml/min

NR = Not recorded

Dissolved oxygen (D.O.) meter not functioning; therefore D.O. readings could not be obtained.

APPENDIX F

EPA LABORATORY QUALIFIERS

ORGANIC ANALYSES

- U: This flag indicates the compound was analyzed for but not detected.
- J: This flag indicates an estimated value. This flag is used: (i) when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed; and (ii) when the mass spectral and retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the CRQL but greater than zero. For example, if the sample quantitation limit is 10 ug/L, but a concentration of 3 ug/L is calculated, report it as 3J.
- N: This flag indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N flag is not used.
- C: This flag applies to pesticide results where the identification has been confirmed by GC/MS. If GC/MS confirmation was attempted but was unsuccessful, do not apply this flag; use a laboratory-defined flag instead (see the X qualifier).
- B: This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates probable blank contamination and warns the data user to take appropriate action. This flag shall be used for a tentatively identified compound as well as for a positively identified target compound.

The combination of flags UB is expressly prohibited. Blank contaminates are flagged B only when they are detected in the sample.

E: This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of the calibration range, the sample or extract shall be diluted and reanalyzed. All such compounds with

ME00Î5-0.8H/MD97807.APD 97.12.23

a response greater than the upper level of the calibration range shall have the concentration flagged with an E on Form I for the original analysis. If the dilution of the extract causes any compounds identified in the first analysis to be below the calibration range in the second analysis, then the results of both analyses shall be reported on separate copies of Form I. The Form I for the diluted sample shall have the DL suffix appended to the sample number.

Note: For total xylenes, where three isomers are quantified as two peaks, the calibration range of each peak shall be considered separately, For example, a diluted analysis is not required for total xylenes unless the concentration of the peak representing the single isomer exceeds 200 ug/L or the peak representing the two co-eluting isomers on that GC column exceeds 400 ug/L. Similarly, if the two 1,2-Dichloroethene isomers coelute, a dilted analysis is not required unless the concentration exceeds 400 ug/L.

- D: This flag is used for all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is reanalyzed at a higher dilution factor, as in the E flag, the DL suffix is appended to the sample number on Form I for the diluted sample, and all concentration values reported on that Form I are flagged with the D flag. This flag alerts data users that any discrepancies between the reported concentrations may be due to dilution of the sample or extract.
- X: Other specific flags may be required to properly define the results. If used, the flags shall be fully described, with the description attached to the sample data summary package and the SDG narrative. Begin by using X. If more than one flag is required for a sample result, use the X flag to represent a combination of several flags. For instance, the X flag might combine the A, B, and D flags for some samples. The laboratory-defined flags for limited to X, Y, and Z.

ME0015-0.8H/MD97807.APD 97.12.23

INORGANIC ANALYSES

- C: (Concentration) qualifier-- specified entries and their meanings are as follows:
 - B: The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" shall be entered.
 - J: The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 - Q: Qualifier -- Specified entries and their meanings are as follows:
 - E: The reported value is estimated because of the presence of interference.

 An explanatory note shall be included under Comments on the Cover Page if the problem applies to all samples) or on the specific FORM I-IN (if it is an isolated problem).
 - M: Duplicate injection precision not met.
 - N: Spiked sample recovery not within control limits.
 - S: The reported value was determined by the Method of Standard Additions (MSA).
 - W: Post-digestion spike for Furnace AA analysis is out of while sample absorbance is less than 50% of spike absorbance.
 - Duplicate analysis not within control limits.
 - + Correlation coefficient for the MSA is less than 0.995.

Entering "S", "W", or "+" is mutually exclusive. No combination of these qualifiers can appear in the same field for an analyte.

M: (Method) qualifier -- Specified entries and their meanings are as follows:

"P" for ICP;

"A" for Flame AA;

"P" for Furnace AA;

"PM" for ICP when Microwave Digestion is used;

"AM" for flame AA when Microwave Digestion is used;

"CV" for Manual Cold Vapor AA;

"CA" for Midi-Distillation Spectrophotometric;

"AS" for Semi-Automated Spectrophotometric;

"C" For Manual Spectrophotometric;

"T" for Titrimetric;

"" where no data has been entered; and

"NR" if the analyte is not required to be analyzed.

ME0015-0.8H/MD97807.APD

APPENDIX G

RAW TRANSDUCER DATA

GeoSynetc Consultants

Step Test at Well PW, NL Industries, Pedricktown, NJ								
			une 1999		30-0	Well		
Elapsed	Well	Wall	Well	Well	Well 27	28		
Time (min.)	PW	OW	KS	KD				
45	3.B12	1.256	0.939	1.047	-0.17	-0.139 -0.123		
46	3.803	1.262	0.946	1.057	-0.151			
47	3.781	1.269	0:955	1.06	-0.148	-0.12		
48	3.822	1.272	0.961	1.063	-0.145	-0:117 -0:126		
49	3.774	1.265	0.965	1.063	-0.158	-0.126		
50	3.793	1.269	0.971	1.066	-0.145	-0.12		
51	3.774	1.272	0:974	1.07	-0.151	-0.12		
52	3.771	1.278	0.984	1.078	-0.132	-0.101		
53	3.771	1.284	0.984	1:076	-0.148	-0.113		
54	3.793	1.287	0.99	1.082	-0.145	-0.113		
55	3.803	1.29	0.99	1.086	-0.142			
56	3.79	1.29	0.993	1.086	-0.142	-0.11		
57	3.796	1:293	0.999	1.089	-0.126	-0.094		
58	3.818	1.296	1.002	1.092	-0.132	-0.101		
59	3.8	1.299	1.006	1.095	-0.132	-0.101		
60	4.355	1.389	1:012	1.149	-0.113	-0.079		
61	4.427	1.441	1:034	1.197	-0.126	-0.091		
62	4.478	1.469	1.056	1.225	-0.123	-0.091		
63	4.474	1.491	1.081	1.244	0.11	-0.079		
64	4.509	1.509	1.1	1.26	-0.113	-0.079		
65	4.509	1.522	1.122	1.273	-0.104	-0.069		
66	4.509	1.531	1.135	1.282	-0.107	-0.072		
67	4.566	1.54	1.151	1.292	-0.104	-0.069		
68	4.509	1.543	1.157	1.295	-0.123	-0.085		
69	4.509	1.556	1.173	1.305	-0.11	-0.072		
70	4:572	1.562	1.182	1.311	-0.107	-0.069		
71	4.572	1.565	1.188	1:317	-0.101	-0.063		
72	4 591	1.571	1.195	1:32	-0.107	-0.069		
73	4.594	1.577	1.204	1.327	-0.097	-0.06		
74	5.732	1.633	1.211	1.349	-0.097	-0.056		
75	7.94	2.148	1.267	1.689	-0.088	-0.047		
76	8.611	2.414	1.406	1.911	-0.094	-0:05		
1 77	8 983	2.593	1.57	2.066	-0.091	-0:047		
78	9.319	2.725	1.728	2.187	-0.091	-0:041		
79	9.555	2.83	1.866	2.282	-0.082	-0.028		
80	976	2.92	1:961	2 368	-0.082	-0.028		
81	9.933	2.987	2 012	2.431	-0.069	-0.012		
82	10.078	3.046	2.027	2.488	-0.072	-0.012		
83	10.191	3.105	2.034	2.539	-0.056	0.006		
84	10.298	3.151	2.037	2.58	-0.053	0.012		
85	10.364	3.191	2.04	2.619	-0 066	0.003		
86	10.373	3.225	2 043	2.65	-0.053	0.015		
87	10.446	3.253	2:043		-0.044	0.028		
88	10.49	3 28	2.043	2.701	-0:037	0.037		
89	10.528	3 302	2:043	2.723	-0.041	0.037		

GeoSynetc Consultants

St	ep Test at	Well PW, N	L Industri	s, Pedrick	town, NJ	
		2 J	une 1999			
Elapsed	Well	Well	Well	Well	Well	Well
Time (min.)	PW	ow	KS	KD	27	28
o i	0.091	-0:092	-0:031	-0.076	-0.249	0.253
1	0.094	-0.095	-0.022	-0.066	-0.259	-0.256
2	0.078	-0.098	-0.031	-0 073	-0.243	0.246
3	-0.161	-0.083	-0.031	-0.057	-0.243	-0.249
4	1.676	0.277	-0.022	0.146	-0.246	-0.249
5	2.765	0.447	0 006	0 273	-0.237	-0.237
6.	3.266	0.688	0.072	0 473	-0.224	-0.227
7	3.481	0.824	0.192	0.597	-0.233	-0.237
.8	2:03	0.713	0:309	0.587	-0.243	-0.24
9	1:521	0.512	0.362	0.454	-0:249	-0.243
10	1.436	0.444	0:372	0.393	-0.246	-0.237
11	1.414	0.419	0.365	0.365	-0.23	-0.224
12	1.357	0.395	0.359	0.349	-0:218	-0.211
13	1.335	0.379	0.346	0.333	-0.224	-0.218
14	1.335	0.373	0.337	0.323	-0:23	-0.224
15	1.313	0.367	0.328	0.32	-0 218	-0.208
16	1.865	0.46	0.328	0.368	-0.224	-0.218
17	1.91	0.5	0.34	0.406	-0.227	-0.218
18	1.925	0.521	0.359	0.425	-0.221	-0.215
19	2.61	0.617	0.362	0.482	-0.221	-0.211
20	2.901	0.747	0.419	0.574	-0:218	0.205
21	2.983	0.818	0.463	0.647	-0.214	-0.202
22	3.011	0.858	0:507	0.685	-0.202	-0.192
23	3 052	0.886	0.548	0.714	-0 214	-0.202
24	3.068	0.907	0.586	0.736	-0.208	-0.192
25	3.09	0.923	0.618	0.752	-0:221	-0 202
26	3.096	0.941	0.646	0.771	-0.214	-0:199
27	3.14	0.957	0 665	0.784	-0 208	-0:189
28	3.15	0.969	0.684	0.8	-0.208	-0:189
29	3.147	0.985	0.706	0.812	-0.195	-0.177
30	3.162	0.997	0.719	0.822	-0.18	-0.164
31	3.194	1.006	0.734	0.832	-0.202	-0.18
32	3.178	1.012	0.744	0:838	-0.186	-0.17
33	3.194	1.018	0.758	0:844	0 183	-0.164
34	3.5	1.077	0.766	0.879	-0.183	-0.158
35	3.585	1.114	0.785	0.917	-0.183	-0.161
36	3.661	1.148	0 807	0.946	-0.176	-0.151
37	3.708	1.173	0.829	0.968	-0.183	-0:158
38	3.724	1.185	0.842	0.981	-0.18	-0.155
39	3.733	1.204	0.867	0.997	-0.164	-0.142
40	3.752	1.216	0.883	1.006	-0.164	-0.136
41	3.784	1.219	0.895	1.013	-0:164	-0.136
42	3 759	1:228	0.908	1.025	-0.173	-0.145
43	3.768	1.241	0.92	1.038	-0.161	-0.132
44	3.781	1.25	0.93	1.041	-0.164	0.136

Page 1

GeoSynetc Consultants

	itep Test a	st Well PW,	NL Indust	Step Test at Well PW, NL Industries, Pedricktown, NJ							
<u> </u>	100.00		June 1999								
Elapsed	Well	Well	Well	Well	Well	Well					
Time (min.)	PW	OW	KS	KD	27	28					
90	10.572	3.324	2.046	2.742	-0.037	0.044					
91	10.613	3.342	2.043	2:758	-0.037	0.044					
92	10.638	3.361	2.046	2.777	-0.041	0.05					
.93	10.65	3.376	2.068	2:796	-0.031	0.056					
94	10.688	3 392	2.302	2.812	-0:022	0.069					
95	10 713	3.404	2 302	2:825	0.028	0 075					
96	10 776	3 425	2 431	2 837	-0 028	0 075					
.97	10.817	3.441	2.428	2 853	-0 022	0.082					
98	10.826	3.453	2.431	2.866	-0.028	0 082					
99	10.852	3 462	2.425	2 876	-0 037	0.079					
100	10.889	3.475	2.425	2:888	-0.028	0.094					
101	10.911	3.487	2.421	2.898	-0.044	0.085					
102	10.924	3.499	2.425	2 91	-0.022	0 104					
103	10.937	3.512	2 431	2.923	-0.018	0.117					
104	10.955	3:524	2 601	2 933	0	0.139					
105	10.968	3 533	2.617	2.942	0.012	0.154					
106	10 968	3 537	2 62	2.948	-0 006	0.145					
107	10.99	3:54	2.623	2.952	-0 015	0.139					
108	11.015	3:549	263	2 958	-0 028	0.136					
109	11.015	3:558	2 636	2.964	-0 022	0.135					
110	11.003	3:564	2.645	2.971	-0.015	0.154					
111	11 015	3.567	2 652	2.977	0.015	0.158					
112	11.04	3.574	2.658	2:98	-0.018	0.150					
113	11.075	3 58	2 664	2.993	-0 012	0.173					
114	11.135	3.595	2.671	3.002	-0 012	0.173					
115	11.116	3.601	2.677	3:009	-0 012	0.183					
116	11.128	3.607	2.686	3.015	-0.009	0.192					
117	11.163	3 614	2.689	3:021	-0.018	0.189					
118	11.198	3 629	2.699	3 034	0.018	0.189					
119	11.229	3.635	2.708	3.04	-0.012	0.199					
120	11.251	3 644	2.712	3 05	-0.012	0.199					
121	11.251	3 651	2718	3.053	-0.012	0.133					
122	11.273	3:654	2.727	3.063	-0:006	0.218					
123	11.273	3.66	2.727	3.063	-0.015	0.215					
124	11.289	3.666	2.737	3:072	-0.018	0.215					
125	11.308	3.672	2.743	3.075	-0.018	0.215					
126	11.33	3.681	2.746	3.082	-0.006	0.221					
127	11.358	3.681	2.749	3.085	-0.008	0.23					
128	11.399	3.694	2.759	3.094	-0.012	0.23					
129	11.449	3.7	2.759	3.101	-0:028	0.224					
130	11 449	3,709	2.768	3.11	-0.022	0.23					
131	11.402	3 703	2.775	3.11	-0.022	0.23					
132	11.449	3.715	2.778	3 117	-0.022						
133	11.462	3.722	2.778	3 117	0:003	0.249					
134	11.443	3.728	2.787	3 126	-0.003	0 262					
	11.55	3.720	2.707	3.120	-0.034	0.23					

GeoSynetic Consultants

	iten Test a	t Well PW	Mt. Indust	ries, Pedric	-litauia M	
			June 1999		Attown, It.	
Elapsed	Well	Well	Well	Well	Well	Well
Time (min.)	PW	ow	KS	KD	27	28
135	11,484	3.731	2.793	3.132	-0.009	0.256
136	11.455	3.734	2.793	3.132	-0.009	
137	11.468	3.737	2.803	3.132	-0.009	0.262
138	11.481	3.743	2.806	3.142	-0.012	0.262
139	11:481	3.749	2 809	3.142	-0.015	0.262
140	11 512	3 743	2 806	3 145	0015	0.272
141	11.477	3 752	2.819	3.152	-0.009	0 275
142	11:506	3:752	2.816	3 155	-0.018	0.268
143	11:506	3:755	2.825	3.158	-0.003	0 287
144	11.493	3.762	2 828	3.161	-0.006	0 287
145	11.481	3.759	2.828	3.161	0.003	0.291
146	11.506	3.759	2.831	3 161	0.000	0.3
147	8 983	3.537	2.828	3 053	-0.025	0.275
148	7.918	3.21	2.762	2.803	-0.009	0.294
149	7.638	3:058	2.658	2.663	-0.006	0.294
150	7.506	2:969	2.56	2.574	0.003	0.303
151	7.393	2:901	2 484	2.511	-0 003	0.297
152	7.348	2.849	2.418	2 46	-0.018	0.281
153	7.267	2.808	2.365	2 4 1 9	-0.009	0.287
154	7.289	2 781	2.327	2.39	0	0.294
155	7.289	2.765	2.298	2.374	0.003	0.294
156	7.26	2.75	2.27	2.355	-0.009	0.284
157	7 226	2.731	2.248	2 336	-0 003	0.284
158	7.229	2.719	2.229	2.323	0	0.287
159	7.222	2 707	2.22	2.314	0.012	0.297
160	7.204	2.691	2.201	2.301	-0.012	0.272
161	7.2	2.682	2.191	2.292	0.006	0.287
162	7.188	2.673	2.179	2.279	-0.003	0.278
163	7.159	2.663	2.175	2.276	0	0.278
164	7.159	2.663	2.166	2 269	0:006	0.278
165	7.156	2.657	2.16	2:266	0.009	0 284
166	7.159	2.648	2.147	2:257	-0.009	0.262
167	7 279	2.648	2:15	2 257	0.009	0 278
168	7.273	2.673	2.144	2:273	0.009	0.278
169	7.074	2:639	2.144	2:254	0.012	0.278
170	7.049	2:617	2.134	2:235	0.022	0.287
171	6.986	2:602	2.125	2.222	-0.003	0.265
172	7.015	2.599	2.119	2 216	0.015	0.275
173	7 002	2.593	2 109	2 209	0.015	0.281
174	6.977	2.583	2.1	2 203	0.012	0.268
175	6.986	2.577	2:097	2.196	0.022	0.281
176	6.977	2.577	2.094	2.196	0.022	0.278
177	6.967	2:574	2:087	2.193	0.031	0.284
178	6.989	2.571	2.081	2.19	0.015	0.272
179	6.952	2:568	2 078	2.184	0.012	0.265

GeoSynetc Consultants

	Step Test	at Well PW	Ni Indus	rice Dode	laktanı. Al	
		2	June 199	9	CKIOWII, N	-
Elapsed	Well	Well	Well	Well	Well	Well
Time (min.)	PW	OW	KS	KD	27	28
180	6.996	2.565	2 078	2.184	0.015	0.265
181	6.977	2.562	2.078	2.187	0.028	0 275
182	6.964	2.562	2.078	2 187	0.022	0 272
183	6.961	2.559	2.075	2.181	0.025	0:272
184	6.97	2.556	2.065	2.177	0.015	0 265
185	6.996	2.559	2 068	2.177	0.012	0 259
186	6.986	2.556	2.068	2.181	0.022	0.268
187	6.964	2.546	2.062	2.171	0.031	0.275
188	6.97	2.552	2.068	2.177	0.034	0 281
189	6.964	2.549	2.065	2 171	0.025	0 268
190	6 933	2.543	2.062	2.171	0 025	0 272
191	6:98	2.546	2.059	2.168	0.028	0.272
192	6.989	2.543	2:059	2.168	0.034	0 275
193	6:945	2:543	2:059	2.171	0.022	0.259
194	6:958	2:54	2:056	2.165	0.041	0 278
195	6 961	2:537	2:056	2.165	0.012	0.253
196	6.986	2:534	2:049	2.162	0.012	0 249
197	6.952	2.54	2 056	2.165	0.025	0 265
198	6.97	2 534	2.053	2.165	0.028	0 265
199	6.98	2.54	2 056	2.165	0.037	0 281
200	6:967	2.534	2.053	2.162	0.015	0.256
201	6.98	2.537	2.056	2.168	0.031	0.268
202	4.178	2.284	2 046	2.057	0.022	0.262
203	2.225	1 691	1 844	1.616	0 022	0 259
204	1.723	1 38	1.567	1.336	0.034	0.265
205	1.503	1.198	1.359	1.162	0.018	0 243
206	1.354	1.065	1.217	1.038	0.015	0.237
207	1.278	0.975	1.113	0.949	0.025	0.237
208	1.196	0.901	1.028	0.873	0.022	0.224
209	1.133	0.843	0.961	0.812	0.031	0.234
210	1.079	0.793	0:908	0.762	0.041	0.23
211	1.026	0.744	0:857	0714	0.022	0 208
212	0 982	07	0.81	0 676	0.015	0.192
213	0 941	0.667	0.769	0 638	0.012	0:177
214	0.906	0 639	0.744	0.612	0.041	0.199
215	0:871	0.611	0:712	0.587	0.041	0 192
216	0:84	0:586	0.684	0.558	0.031	0.18
217	0.811	0:562	0.659	0.536	0.028	0.167
218	0.786	0:54	0.637	0.517	0.034	0.164
219	0.764	0:518	0.615	0 495	0.034	0.161
220	0.738	0:497	0:592	0.476	0.041	0.161
221	0.72	0.478	0 57	0.457	0.025	0.139
222	0.701	0.463	0 555	0.441	0.028	0.136
223	0 685	0 447	0.536	0.425	0.022	0.126
224	0.666	0 432	0.523	0 416	0:031	0.123

Page 5

GeoSynetc Consultants

	ep resta		NL Indust	ries, Pedric	ktown, N.	
Elapsed	Well	Well	Well		167.11	
Time (min.)				Well	Well	Well
	PW	OW	KS	KD	27	28
225	0.653	0:423	0.507	0.403	0.037	0.129
226	0.634	0.41	0.495	0.39	0.028	0:11
227	0.618	0.395	0.479	0.377	0.028	0.107
228	0.609	0:389	0.473	0.368	0:047	0.12
229	0.596	0.376	0 463	0 358	0.034	0 101

GeoSynetc Consultants

St	ep Test at	Well PW,	IL Industri	es, Pedrick	town, NJ	
		2.	une 1999			
Elapsed	Well	Well	Well	Well	Well	Well
Time (min.)	PW	OW	KS .	KD	27	28
0.	0.091	-0.092	-0.031	-0.076	-0.249	-0.253
1	0.094	-0.095	-0.022	-0.066	0.259	-0.256
2	0.078	-0.098	-0.031	-0 073	-0.243	-0.246
3	-0.161	-0.083	-0.031	-0.057	-0.243	-0.249
4	1.676	0.277	-0.022	0.146	-0:246	-0 249
5	2.765	0.447	0.006	0 273	-0.237	-0.237
6	3.266	0.688	0.072	0.473	-0.224	-0.227
7	3.481	0.824	0.192	0.597	-0.233	-0.237
8	2.03	0.713	0.309	0 587	-0.243	-0.24
9	1.521	0.512	0 362	0.454	-0 249	-0.243
10	1.436	0.444,	0.372	0.393	-0.246	-0.237
11	1.414	0.419	0.365	0.365	-0.23	-0.224
12	1.357	0.395	0.359	0.349	-0.218	-0.211
13	1.335	0:379	0.346	0.333	-0.224	-0.218
14	1.335	0.373	0.337	0.323	-0.23	-0.224
15	1.313	0:367	0.328	0.32	-0 218	-0.208
16	1.865	0.46	0:328	0.368	-0.224	-0.218
17	1.91	0:5	0:34	0.406	-0.227	-0.218
18	1.925	0.521	0.359	0.425	-0.221	-0.215
19	2.61	0.617	0.362	0.482	-0.221	-0.211
20	2.901	0.747	0.419	0:574	-0.218	-0.205
21	2.983	0.818	0.463	0.647	-0.214	-0.202
22	3.011	0.858	0.507	0.685	-0.202	-0.192
23	3.052	0.886	0.548	0.714	-0.214	-0.202
24	3:068	0.907	0.586	0.736	-0.208	-0.192
25	3.09	0.923	0.618	0.752	-0.221	-0.202
26	3.096	0:941	0.648	0.771	-0.214	-0.199
27	3.14	0:957	0 665	0.784	-0 208	-0 189
28	3.15	0.969	0.684	0.8	-0:208	-0.189
29	3.147	0.985	0.706	0.812	-0.195	-0.177
30	3.162	0.997	0.719	0.822	-0.18	-0.164
31	3.194	1.006	0.734	0.832	-0.202	-0.18
32	3.178	1.012	0.744	Q 838	-0.186	-0:17
33	3.194	1.018	0.756	0.844	-0.183	-0 164
34	3.5	1.077	0.766	0 879	-0 183	-0.158
35	3:585	1.114	0.785	0.917	-0.183	-0.161
36	3:661	1.148	0:807	0.946	-0.176	-0.151
37	3.708	1.173	0.829	0.968	-0.183	-0.158
38	3.724	1.185	0.842	0.981	-0.18	-0.155
39	3.733	1.204	0.867	0.997	-0.164	-0.142
40	3.752	1.216	0.883	1.006	-0.164	-0.136
41	3.784	1.219	0.895	1.013	-0.164	-0.136
42	3 759	1.228	0.908	1.025	-0.173	-0:145
43	3.768	1.241	0.92	1.038	-0.161	-0.132
44	3.781	1.25	0.93	1.041	-0.164	-0.136

GeoSynetc Consultants

	Step Test at Well PW, NL Industries, Pedricktown, NJ								
- 01	eb iest at	2.1	une 1999						
Florand	Well	Well	Well	Well	Well	Well			
Elapsed Time (min.)	PW	OW	KS	KD	27	28			
	3.812	1.256	0.939	1.047	-0:17	-0.139			
45	3.803	1.262	0.946	1.057	-0.151	-0.123			
46	3.781	1.269	0.955	1.06	0.148	-0.12			
47	3:822	1.272	0.961	1.063	-0.145	-0.117			
48	3.774	1.265	0.965	1.063	-0.158	-0.126			
49 50	3.793	1.269	0.505	1.066	-0.145	-0.12			
50	3.774	1.272	0.974	1.07	-0.151	-0.12			
52	3.771	1.278	0.984	1.076	-0.132	-0.101			
53	3.771	1.284	0.984	1.076	-0.148	-0.117			
54	3.793	1 287	0.99	1.082	-0.145	-0:113			
55	3 803	1.29	0.99	1.086	-0.142	-0.107			
56	3.79	1.29	0.993	1.086	-0.142	-0:11			
57	3.796	1.293	0.999	1.089	-0.126	-0:094			
	3818	1.296	1.002	1.092	-0.132	-0.101			
58 59	3.8	1.299	1.006	1.095	-0.132	-0.101			
	4:355	1.389	1.012	1.149	-0.113	-0.079			
60	4.427	1.441	1.034	1.197	-0.126	-0.091			
61	4.427	1.469	1.056	1.225	-0.123	-0.091			
62	4.474	1.491	1.081	1.244	-0.11	-0.079			
63	4.474	1.509	1.1	1.26	-0.113	-0:079			
64	4.509	1.522	1.122	1 273	-0.104	-0:069			
65	4.509	1.531	1.135	1.282	-0.107	-0.072			
66	4.566	1.54	1.151	1,292	-0.104	-0:069			
67	4.509	1.543	1.157	1.295	-0.123	-0.085			
68		1.556	1 173	1 305	-0.11	-0.072			
69	4:509	1.582	1.182	1.311	-0.107	-0.069			
70	4 572	1.565	1.188	1,317	-0 101	-0.063			
71	4.572		1.195	1.32	-0.107	-0.069			
72	4.591	1.571	1.193	1.327	-0.097	-0.06			
73	4.594	1.577	1.211	1.349	-0.097	-0.056			
74	5.732	2.148	1.267	1.689	-0.088	-0.047			
75	7.94	2.146	1.406	1.911	-0.094	-0.05			
76	8.611		1.57	2 066	-0.091	-0.047			
77	8 983	2.593	1.728	2.187	-0.091	-0.041			
78	9:319	2.725	1.726	2 282	-0.082	-0.028			
79	9:555	2.83	1.961	2.368	-0.082	-0.028			
80	9.76	2.987	2.012	2.431	-0.069	-0.012			
81	9.933	3.046	2 027	2.488	-0.072	-0.012			
82_	10.078	3.105	2:027	2.539	-0.056	0.006			
83	10.191	3.105	2.037	2.58	-0.053	0.012			
84		3.191	2.037	2.619	-0.066	0.003			
85	10.364	3.225	2 043	2.65	-0.053	0.015			
86 87	10:373	3.253	2.043	2.676	-0.044	0.028			
88	10:446	3.28	2.043	2.701	-0.037	0.037			
88	10.528	3 302	2.043		-0.041	0.037			
89	10.526	3 302	2.040						

GeoSynetc:Consultants

- 3	itep Test a	t Well PW	NL Indus	ries, Pedr	icktown, N	, 		
	2 June 1999							
Elapsed	Well	Well	Well	Well	Well	Well		
Time (min.)	PW	OW	KS	KD	27	28		
90	10.572	3.324	2.046	2.742	-0.037	0.044		
91	10.613	3.342	2.043	2.758	-0.037	0.044		
92	10.638	3.361	2.046	2.777	-0.041	0.05		
93	10.65	3.376	2.068	2.796	-0.031	0.056		
94	10.688	3 392	2.302	2.812	-0.022	0.069		
95	10.713	3.404	2:302	2 825	-0 028	0 075		
96	10 776	3.425	2:431	2 837	-0 028	0 075		
97	10.817	3:441	2.428	2.853	-0.022	0.082		
98	10.826	3.453	2.431	2.866	-0.028	0 082		
99	10.852	3.462	2.425	2 876	-0.037	0.079		
100	10.889	3.475	2 425	2.888	-0.028	0.094		
101	10:911	3:487	2.421	2.898	-0.044	0.085		
102	10.924	3.499	2.425	2:91	-0.022	0.104		
103	10.937	3.512	2.431	2:923	-0.018	0.117		
104	10.955	3.524	2.601	2 933	0	0.139		
105	10.968	3.533	2.617	2:942	0.012	0.154		
106	10 968	3 537	2.62	2:948	-0.006	0.145		
107	10.99	3.54	2.623	2 952	-0.015	0.139		
108	11.015	3.549	2 63	2.958	-0.028	0:136		
109	11:015	3.558	2.636	2.964	-0.022	0:145		
110	11.003	3.564	2 645	2 971	-0.015	0.154		
111	11 015	3.567	2 652	2.977	-0.015	0.158		
112	11.04	3.574	2:658	2.98	-0.018	0.164		
113	11.075	3:58	2 664	2.993	-0 012	0.173		
114	11.135	3.595	2,671	3.002	-0.012	0.183		
115	11.116	3.601	2.677	3.009	-0.012	0.183		
116	11.128	3,607	2.686	3.015	-0.009	0.192		
117	11.163	3.614	2.689	3 021	-0.018	0.189		
118	11.198	3.629	2.699	3.034	-0.018	0.189		
119	11.229	3.635	2.708	3:04	0.012	0.199		
120	11.251	3.644	2.712	3:05	0.018	0.199		
121	11.251	3 651	2718	3.053	-0.012	0.208		
122	11.273	3.654	2.727	3.063	-0.006	0.218		
123	11.273	3.66	2.727	3.063	-0.015	0.215		
124	11.289	3.666	2 737	3.072	-0.018	0.215		
125	11.308	3.672	2.743	3:075	-0.018	0.213		
126	11.33	3.681	2.746	3.082	0.006	0.234		
127	11.358	3 681	2.749	3 085	-0.012	0.23		
128	11.399	3.694	2.759	3.094	0.028	0.224		
129	11.449	3.7	2.759	3.101	-0.022	0.227		
130	11.449	3.709	2.768	3.11	0.022	0.23		
131	11.402	3.703	2.775	3.11	-0:022	0.234		
132	11.449	3.715	2.778	3 117	-0.006	0.249		
133	11:462	3.722	2.787	3.12	0.003	0.249		
134	11.443	3.728	2.787	3.126	-0.034	0.23		
				9.120	-0.034	0/23		

GeoSynetc Consultants

	ton Tost s	4 Wall Did!	All tendons	ries, Pedri	.17	
} <u>`</u>	rep rest a		June 1999		cktown, N.	<i>'</i>
Elapsed	Well	Weli	Well	Well	Well	Well
Time (min.)	PW	OW	KS	KD	27	28
135	11.484	3.731	2.793	3.132	-0.009	0.256
136	11.455	3.734	2.793	3.132	-0.009	0.262
137	11.468	3.737	2.803	3.139	-0.009	0.262
138	11.481	3.743	2.806	3.142	-0.015	0.262
139	11.481	3.749	2.809	3.145	-0.013	0.268
140	11.512	3.743	2 806	3 145	-0 015	0.200
141	11.477	3 752	2 819	3.152	-0.009	0.275
142	11.506	3.752	2.816	3:155	-0.018	0.27.3
143	11.506	3.755	2.825	3.158	-0.003	0.287
144	11,493	3.762	2.828	3.161	-0.006	0.287
145	11.481	3.759	2.828	3.161	-0.003	0.291
146	11.506	3.759	2.831	3 161	0	0.23
147	8.983	3.537	2.828	3.053	-0.025	0.275
148	7.918	3.21	2.762	2.803	-0.009	0.294
149	7.638	3.058	2.658	2.663	-0.006	0.294
150	7.506	2.969	2:56	2.574	0.003	0.303
151	7.393	2.901	2:484	2:511	-0.003	0.303
152	7.348	2.849	2.418	2.46	-0.003	0.281
153	7.267	2.808	2:365	2 419	-0.009	0.287
154	7.289	2.781	2.327	2 39	0.003	0.294
155	7.289	2.765	2.298	2 374	0.003	0.294
156	7.26	2.75	2.27	2.355	-0.009	0.284
157	7.226	2.731	2 248	2.336	-0.003	0.284
158	7.229	2719	2 229	2.323	0	0.287
159	7.222	2.707	2.22	2.314	0.012	0.297
160	7.204	2.691	2.201	2.301	-0.012	0.272
161	7.2	2.682	2.191	2.292	0.006	0:272
162	7.188	2.673	2 179	2.279	-0.003	0.287
163	7.159	2.663	2.175	2.276	0.003	0.278
164	7.159	2.663	2.166	2.269	0.006	
165	7.156	2 657	2.16	2.266	0:009	0.278 0.284
166	7.159	2.648	2.147	2.257	-0.009	0.262
167	7.279	2.648	2.15	2.257	0.009	0.278
168	7.273	2.673	2.144	2.273	0.009	0.278
169	7.074	2.639	2.144	2.254	0.003	0.278
170	7:049	2.617	2.134	2.235	0.012	0.278
171	6.986	2.602	2.125	2.222	-0.003	0.265
172	7.015	2 599	2.119	2.216	0.015	0.265
173	7.002	2.593	2 109	2.209	0.015	0.275
174	6.977	2.583	2.1	2.203	0.013	0.261
175	6.986	2 577	2.097	2.196	0.012	0.281
176	6.977	2.577	2.094	2 196	0.022	0.278
177	6.967	2.574	2 087	2.193	0.022	0.278.
178	6.989	2.571	2 081	2 19	0.015	0.284
179	6.952	2 568	2 078	2 184	0.013	0.265
		2.555	2010	. 2.104	0.012	0.205

GeoSynetc Consultants

	Step Test	t Well PW	NL Indus	ries. Pedri	cktown N	
		2	June 1999)	CRIONII, IV	
Elapsed	Well	Well	Well	Well	Well	Well
Time (min.)	PW	OW	KS	KD	27	28
180	6.996	2.565	2.078	2.184	0.015	0 265
181	6.977	2.562	2.078	2.187	0.028	0 275
182	6.964	2.562	2:078	2.187	0.022	0 272
183	6 961	2.559	2.075	2.181	0.025	0 272
184	6:97	2:556	2.065	2.177	0.015	0.265
185	6.996	2:559	2.068	2.177	0.012	0 259
186	6.986	2:556	2.068	2.181	0.022	0 268
187	6.964	2:546	2:062	2.171	0.031	0.275
188	6.97	2:552	2.068	2.177	0.034	0 281
189	6.964	2:549	2.065	2.171	0.025	0 268
190	6.933	2:543	2.062	2.171	0.025	0 272
191	6.98	2.546	2.059	2.168	0.028	0.272
192	6.989	2.543	2 059	2.168	0.034	0.275
193	6.945	2 543	2.059	2.171	0.022	0:259
194	6.958	2.54	2.056	2.165	0.041	0.278
195	6.961	2.537	2.056	2.165	0 012	0,253
196	6 986	2.534	2.049	2.162	0.012	0 249
197	6.952	2.54	2 056	2.165	0 025	0.265
198	6.97	2.534	2.053	2.165	0 028	0.265
199	6.98	2.54	2.056	2:165	0.037	0.281
200	6.967	2.534	2.053	2:162	0.015	0.256
201	6.98	2 537	2:056	2:168	0.031	0.268
202	4.178	2 284	2:046	2.057	0.022	0.262
203	2.225	1:691	1:844	1.616	0 022	0 259
204	1.723	.1:38	1:567	1.336	0.034	0.265
205	1.503	1.198	1:359	1.162	0.018	0 243
206	1.354	1.065	1.217	1.038	0.015	0.237
207	1.278	0:975	1.113	0.949	0.025	0 237
208	1.196	0.901	1.028	0.873	0.022	0 224
209	1.133	0.843	0.961	0.812	0.031	0 234
210	1.079	0.793	0.908	0.762	0.041	0.23
211	1.026	0.744	0:857	0714	0.022	0 208
212	0:982	07	0:81	0 676	0:015	0.192
213	0 941	0 667	0.769	0.638	0.012	0.177
214	0.906	0 639	0.744	0.612	0.041	0.199
215 216	0.871	0611	0.712	0.587	0.041	0.192
217	0.84	0 586	0 684	0.558	0.031	0.18
218	0.811	0.562	0 659	0.536	0.028	0.167
219	0.786 0.764	0 54	0 637	0.517	0.034	0.164
220	0.764	0.518	0.615	0.495	0.034	0.161
221	0.738	0.497	0.592	0.476	0.041	0.161
222	0.701	0 478	0.57	0.457	0.025	0.139
223	0 685	0.463	0 555	0.441	0 028	0.136
223	0.666	0.447	0.536	0.425	0.022	0.126
227	J.000	0.432	0.523	0.416	0.031	0.123

GeoSynetc Consultants

	Step Test at Well PW, NL Industries, Pedricktown, NJ 2 June 1999									
Elapsed Well Well Well Well Well We										
Time (min.)	PW	OW	KS	KD	27	28				
225	0.653	0.423	0.507	0.403	0.037	0.129				
228	0.634	0.41	0.495	0.39	0.028	0.11				
227	0.618	0:395	0.479	0.377	0.028	0.107				
228	0.609	0.389	0.473	0:368	0.047	0.12				
229	0 596	0.376	0 463	0 358	0.034	0.101				

APPENDIX H

DATALOGGER TABLES

GeoSyntec Consultants

		stant Rate Ad	_	6/7/99	14:20				
Elapsed	Total	Well	Well	Well	· Well	Well T	Well T	Well	
Tane	Elapsed	PW	ow.	KS	КО		28	SD.	Pressure
Step 0									4,622010
0 0083	0 0083	1 982	Ō	Ö	0 009	D 009	0018	0 053	0 00
0 0166	0 0166	0 473	0	-0 003	0 012	0.006	0 0 1 5	0.05	0.00
0 025	0 025	0 489	0	0 006	0 009	0 006	0018	0 05	0 00
0 0333	0 0333	0 666 0 792	0 006 0 006	0 009	0 006	0.006	0018	0.047	
0 0416	0 0416	1041	0 008	0	0 009	0 003	0 0 1 5	.0 05	-0.00
0.05	0 05	1 196	0 015	0 006	0.012	0 003	0.015	0.047	0 00
0 0563	0 0583	1 344	0 018	0 006	0 009	0 003	0.012	0 047	
0.0666	0 0666	1 528	0 024	0 006	0 009	0	0 012	0 041	
0 075	0 075	1 707	6031		0 003	0 003	0 012	0.041	0 00
0 0833	0 0633	1 812	0 04	0 006	0 003	0 003	0 009	0 0 3 7	
0 0916	0 0916	1 998	0.049	-0 003	- 0003	0 006	0 006	0 041	0 00
01	0 1	2 174	0.058	-0 006	0 003	-0 000	0 003	0 034 0 031	0 00
0 1083	0 1083	2 272	0.067	-0 012	0 006	0 009	0 003		0 00
0 1166	0 1166	2 427	80 0	0 009	0 009	0 012	0 003	0.031	0 00
0 125	0 125	2 607	0 089	-0.012	0.009	0 012	0 003	0 028	
0 1333	0:1333	2 705	0 101	0 006	0.015	0 012	- 6	0 025	
0 1416	0 1416	2 865	0:114	-0 012	0 019	0 015		0 026	
0.15	0 15	3 029	0.126	0 009	0 022	0 015	0.003	0 028	0.00
	0 1583	3 115	0 138	0 012	0.028	0 018	0 003	0 025	0 00
0 1666 0 175	0 1666	3 263	0 154	0 009	0 028	0 022	0 006	0 016	-0 00
0 1833	0 175	3 417	0 163	0 012	0.034	0 022	-0 006	0 018	0 00
0 1916	0 1833	3.471	0 179	-0 009	0.041	0 022	0 009	0 015	0.00
0 7 9 1 9 1	0 19181	3 603 3 726	0 194	-0 006	0 047	0 025	-0.009	0 022	
0 2083	0 2083	3 783	0 209 0 225	-0 006	0.05	0 025	0 009	0 012	-0 00
0 2166	0 2166	3 697	0 225	·0 009	0 06	0 028	-0012	0 009	
0 225	0 225	4 023	0 253	-0 006	0 066	0 028	0012	0 015	
0 2333	0 2333	4 086	0 268	0 006	0.069	0 028	-0015	0 009	
0 2416	0 2416	4 165	0 284	0 009	0 079	0 031	-0015	0 009	0.00
0 25	0.25	73	0 296	0 009		0.034	0 015	0 009	
0 2583	0 2583	4 406	0 311	0 009	0 092	0 034	0 dia	0 006	-0 00
0 2666	0 2666	4 452	0 324	0 009		0 034	-0018	0 003	0 00
0 275	0 275	4 562	0 336	0 009	0 104	0 037	0010	0 003	
0 2833	0.2833	4 622	0 345	0 009	0 123	0 037	0.018	D D06	
0 2916	0.2916	4 691	0 361	-0 003	0 13	0 041	-0 022	0 003	0.005
0.3	0 3	4 798	0 376	0 003	0 136	0 044	-0 022	0 003	
0 1083	0,3083	4 893	0 392	0 009	0 142	0 014	-0 022	0	0 009
0 3166	0 3166	4 928	0.401	0 006	0 149	0 047	0 025	0	
0 325	0 325	5 044	0.419	-0 006	0 158	0 047	0 028	-0 003	
0 3333	0 3333	5 139	0 432	0 006	0 168	0 047	0 028	-0.003	0 005
0 35 0 3666	0 35	5 262	0 457	0 003	0 184	0 05	0 0 3 1	-0 003	
0 3833	0.3666	5 378	0 487	0	0.2	-0 053	0 031	0 009	0 005
0.3033	0 3833	5 574	0:515	Ō	0.212	0.053	0 034	0 012	0 005
0 4166	0 4 166	5 671	0.54	0.003	0.225	0 056	0 037	0 015	- 000
0 4333	0 4333	5 804	0 568	0	0:244	0 06	0 037	0 012	<u>`</u>
0 45	0 45	6 056	0 595	- 0	0 26	·0 06	-0.044	0 0 10	
0 4566	0 4666	6 182	0611	0	0.276	0.06	-0 041	0 022	
0 4833	0 4833	6 327	0 67	0 009	0 298	0 063	0 041	0 0 1 8	
0.5	0.5	6 402	0 694	0012	0.311	0 063	0 044	0 022	0 005
0 5166	0 5 1 6 6	6 5 16	0 719	- 6 61 6 -	0 323	0 063	0 044	0 025	
0 5333	0 5333	6 651	0 747	0 015	0 358		0 047	0 025	.0 00¢
0 55	0:55	6:717	0 771	0 028	0.374	0 066	-0 047	0 022	Ó
0 5666	0 5666	6 799	0 799	0 022	0 39	0 069	0 047	0 025	0 005
0 5833	0.5833	6 935	0.821	0 034	0 403	0 069	0.05	0 025	- 0
0.6	0.6	7 004	0.842	0 034	0 422	0 069	0 053	-0 028	0
0 6166	0,6166	7 048	0.867	0,031	0 438	0 072	0 053	-0 031	0.005

GeoSyntec Consultants

	Con	PA eten mete	uner lest at t		dustries Site, P	edricktown, I	IJ, 7 June 19)9	
Elapsed	Total	Well I	Well T	6/7/59 Well	14:20 Well				
Turie	Elapsed	PW	-ww-	KS	KD	Well 27	Well 28	Well	BAIO.
0 6333	0 6333	7 18	0.679	0 044	0.45	- 10 072	0 053	SD 0 031	Pressure
0 65	0 65	7.231	0 904	0 047	0 469	0.072	0 053	0 0 3 4	0.00
0 6666	0.6666	7 266	0 926	0 056	0 485	0 072	0 056	0 034	0 00
0 6833	0 6633	7 369	0.95	0 056	0 501	0 072	0 056	-0 034	0.00
07 07166	0.7	7 423	0 975	0 059	0 517	0.072	-0 056	-0 037	0.0
0 73333	0 7333	7 448	0 994	0.072	0 53	0.075	0 056	0.034	
0 75	0 75	7 602	1 015	0.078	0 549	0 075	0 06	0.017	00
0 7666	0.7667	7 615	1 055	0 085	0 558 0 574	0 075	0 056	0 037	
0 7833	07833	7 694	1 068	0 094	0 587	0 075	0 056	-0 034	
0.6	0.8	7.757	1 089	0 104	0 606	0 075	0 056	0 041	0.0
0 8 166	0 8166	7 785	1 108	0 107	0 616	0 072	7 056	0 041	
0 8333	0 8333	7 835	1 126	0 113	0 631	0 072	0 056	0 044	-00
0.85	0.85	7.92	1 145	0 1 19	0 65	0 072	-0 056	0 041	0
0.8666	0 8666	7 943	1 163	0:135	0 66	0 072	0 056	0.034	
0.8633	0 8833	7 961	1 182	0:141	0 673	-0 072	-0 053	0 034	
0 9166	09166	8 05 8 094	1 197	0 148	0 689	-0 069	0.056	0 031	
0 9333	0 9333	8 078	1 216	0 154	0 701	-0 069	0 053	0 026	
0 95	0 95	8 097	1 247	0 16	0.714	0 069	0 053	-0 028	
D 9666	0 9666	- 1051	1 259	0 179	0.727	0 056	0 05	0 031	0.0
0 9833	0 9833	7 968	1 275	0.157	0.755	0 066	0 053	0 026	
1	1	7 949	1 287	0 164	0 765	0 066	0.05	0 022	. 0
1 2	12	6 799	1 336	0 102	0 866	0 034	0 028	0 018	0.0
1.4	14	6 481	1 321	041	0 895	0 041	0 025	0 003	0.0
1:6	16	7 116	1 429	0 486	0 962	0.053	0 037	0 012	
1.8	18		1 546	0 564	1 051	0 056	-0 037	0 012	0.0
2 2	2 2 2	7 977	1 6 4 5	0 655	1 133	0.06	0 037	-0 009	
24	24	8 342	1 741	0.728	1,212	0 056	-0 034	0.015	0.0
26	- 26	8 786	1913	0.81	1.269	0 053	-0 031	0 009	
2 8	28	8 981	1 991	0 876	1 356	0.05	0 025	0 009	0.0
		9 107	2 062	1 013	1 428	0 047	-0 022	0 003	0.0
3:2	3 2	9 091	2 12	1 084	1 555	0 012	-0 009	0 015	
34	34	9 189	2 176	1144	1 606	0012	0 015	0 037	0
3 6	36	9 321	2 225	1 204	1 657	0 015	0 047	0 056 0 085	0.0
3.6	3 8	9 249	2 268	1 248	1 701	0018	0 053	0 107	00
4	4	9 2 3 6	2 302	1 299	1 739	0 025	0 06	0 123	00
4.2	4.2	9 154	2 321	1 346	1771	0 031	0 069	0 135	
-44	4.4	9 057	2 316	1304	1 784	0 037	0 079	0 135	
46	4 6	8 852	2 299	1 415	1 793	0 034	0 079	0 145	0
	4.8	8.638	2 278	1.438	1 79	0.016	0 069	0 142	00
- 52	32 -	8 415 8 257	2 262 2 244	1 453	1 784	0 009	0 063	0 138	
54	- 34-	8 138	2 231	1 463	1781	0 009	0 061	0 135	
56	- 56	7 911	- 2213	1 479	1774	0 018	0 072	0 132	
5.8	5.8	7735	2 185	1 479	1755	0 022	0 079	0 129	0.0
6	- 6	7 599	2 163	1 485	1746	0 015	0 082	0 129	
6 2	6.2	7 499	2 139	1 482	1733	0 012	0 075	0 132 0 129	0.0
6.4	6.4	7 417	2 123	1 479	1 723	0 003	0 069	0 113	00
6 6	6.6	7 357	2111	1 479	1711	0 009	0 06	0 097	
6 8	6.8	7 297	2 089	1/479	1 704	-0 018	0 053	0 097	
72	7 7 2	724	2 083	1 479	1.695	-0 025	0.047	0 101	0.0
- / 4		7 187	2 074	1 479	1 689	-0 028	0.047	0 1 19	
76		7 14	2 068	1 475	1 685	0 028	0 05	0 119	0.0
/ 8 -	- 78 -	7 064	2 059	1 472	1 679	-0 025	0 056	0 129	0.0
′å ⊦		7 036	2 046	1 475	1 669	0.031	0 05	0 135	0.0
82	82	7 001	2 046	1 479	1:673	-0.025	0.056	0:135	0.0
			6.070	14/9	1.673	0.015	0 069	0 138	00

GeoSyntec Consultants

	Co	onstant Rate Au	uifer Yost at	Well PW, NL	Industries:Site,	Pedricktown,	NJ, 7 June 19	19	
Elapsed	Total			6/7/9	9 14:20				
Tone		Well	Well	Well	Well	Well	Well	Well	Baro.
	Elapsed	PW	ow	KS	KD	27	28	SD	Pressure
8.4	84	6 973	2 031	1 472	1 669	0 009	0 075	0 138	Fieszule
86	8.6	6 969	2 046	1 475	1 569	0 009	0 075	0115	0
8.8	8.8	6 938	2 031	1 479	1 673	0 009	0 079		0 005
9	9	6 903	2.043	1 479	1,673	0 006		0 126	0 005
9.2	9.2	6 888	2 046	1 475	1.669	0 006	0 0 0 5	0 132	0
9.4	9 4	6 869	2 04	1 479	1 669	0 009	0 0 0 8	0,135	0 005
96	96	6 878	2 046	1 475	1 673		0.085	0.145	0 005
9.8	9 8	6 862	2 0 3 7	1 472	1 669	0 009	0.091	0 148	- 6
10	10	6 8 3 7	2 031	1 472		0 022	0 682	0 116	·
12	12	6 799	2 028	1 472	1 666	0 06	0 647	0 091	0 000
14	14	6 815	2 049	- 1482		0 072	0 053	0.116	0 005
16	16	674	2 068	1 482	1 692	0 018	0 123	0.22	0 005
18	18	6 648	2 092		1711	0 031	0 129	0 243	0.01
. 20	20	6 6 3 9		1 488	1 736	0 037	0 142	0 255	0.005
22			2 105	1 482	1:752	0 104	0 C91	0 233	0.01
		661	2 123	1 472	1 768	0:11	0 094	0 205	0.014
26	24	6 588	2 151	1 488	1.6	0 022	0 166	0 356	0 0 1
	26	6 5 7 6	2 17	1 491	1815	0 0 3 1	0 205	0 366	001
28	28	6:585	2 182	1 488	1 828	0 066	0183	0 331	
30	30	6 528	2 194	1 485	1 841	0 062	0 177		0 01
32	32	6:469	2 207	1 488	1 857	0 066	0 205	0 293	0 015
34	34	6 472	2 219	1 485	1 866	0 079		0 359	0.02
36	36	6 465	2 228	1 485	1 876		0 205	0 35	0.025
38	38	6 494	2 241	1 485		0 097	0.199	0 347	0 02
40	40	6 497	2 256	1 482	1 888	0 085	0.218	0 362	0.03
42	42	6 538	2 262		1 858	-0 088	0 227	0 381	0 025
44		6 525	2 268	1 485	1 908	0.002	0 237	0 388	0 025
46	46	6 525	2 281	1 482	1917	0 097	0.23	0 194	0 03
48	48	6 576	2 29	1 482	1 923	-0 104	0 23	0 375	0 03
50	50	6.56		1 485	1 936	-0 072	0 272	0 429	0 03
5.7		6344	2 293	1 482	1 942	0 101	0.245	0.4	0 035
54	54	6 573	2 299	1 482	1 949	0 101	0 256	0.416	0 0 3
	56		2 305	1.482	1 955	0 094	0 268	0 407	0 035
		6 601	2:315	1:479	1 961	0 101	0 268	0.441	0.035
	58	6 623	2 321	1 479	1 971	0:104	0 268	0 429	004
60	60	6 6 3 9	2 324	1.47.2	1971	0 161	0 224	0 362	- 66
62	62	6 62	2 336	1.482	1987	0.082	0 303	0.467	
64	64	6 6 1 7	2 342	1:485	1 993	0 082	0 366	0 47	0 04
6 ò	66	6 648	2 345	1 482	1.956	911	0 281	0 445	0.035
68	68	6 629	2/349	1 479	3	0.113	0 287		0.035
70	70	6 661	2.158	1 462	2.009	0007		0 457	0.035
72	72	6 692	2 364	1 479	2 005	0 691	63£ 0	0 473	0 035
74	74	6 667	2 367	1 482	2015			0 47	0 045
76	76	6 683	2 373	1 485	2 025	880 0	0 122	0.482	0 0 35
- 78	78	6 654	2 373	1 482	2 025	1000	0 322	0 479	0 04
80	80	6 661	2379	1 639	2 025	0 094	0 322	0:479	0 04
82	62	6,677	2 363	1 734		0 085	0 332	0 495	0.045
84	84	6 686	2 3 8 3	1728	2 034	0 107	0 319	0 457	0.045
86	Bu	5 689	2 389	 1/51	2 034	0 088	0 341	0 50a	0 045
Òà	68	6 677	2 392	1 /3	2 041	√0 085	0 344	0 501	0 045
90	50	6 683	2 395	1 728	2 044	-0 094	0 338	0 511	0 05
92	92	6.702	2 392		2 04/	0 080	0/347	0.514	0.05
94		6.717	2 398	1 721	2 047	-0 101	0.335	0 498	0 055
96	96	6711	2 404	1721	2 053	-0 068	0.351	0 508	0.06
98		6708	2 407	1 721	2 057	0 088	0 354	0 508	0 00
100	100	6 724	2 407	1 721	2 06	0 094	0 354	0 314	0 065
105		- 6/27		1718	2.06	0 088	D 357	0517	0 07
	 ; ;;].		7713	1 914	2 069	0 088	0 363	0 523	0 07
115	115	6714	2 42	ſ 92	2 076	0 088	0 366	0 523	0 07
120		6 755	2 426	1:929	2 082	0 091	0 37	0 52	0 075
	120	6.74	2 432	1 939	2 088	0 075	0 385	0 546	0 07
163	125	6 746	2 4 3 8	1 942	2 095	0.082	0 389	0 539	0 07

GeoSyntec Consultants

		statit Mate My	uner lest at v	6/7/99:	dustries Site, P	edricktown, A	IJ. 7 June 19:	19	
Elapsed	Total	Well	Well	Well	Well	Well	Well I	Well	8
Tirtie	Elapsed	PW	ow	KS	KÖ	27	26	SD:	Baro. Pressure
130	130	7 316	2 54	1 98	2 171	0 085	0 392	0 555	
135	135	6 906	2.516	2 03	2 174	011	0 373	0 542	00
140	140	6 727	2 457	1 974	2 117	0 091	0 398	0 571	00
145	145	6 976	2 512	2 002	2 161	0 066	0 411	0 566	0.07
150	150	6 995	2 524	2 013	2 171	0 075	0 423	0.58	0.0
155	155	7 001	2 526	2 024	2 177	0.082	0 433	0 593	
160	160	7 02	2:537	70	2 187	0 148	043	0 556	0.0
165	165	7 029	2 54	2 037	2 19	0:123	0414	0 577	000
170	170	7 01	2.543	2 04	2 193	0 125	0 423	0 599	
175	175	7 01	2:543	2.04	2 196	0 129	0 427	0 583	- 60
180	180	7 641	2-549	2 046	2 199	0 135	0 439	0 602	0.0
185	185	7 017	2 552	2 049	2 206	0 139	0 446	0612	0
190	190	7 045	2 552	2 052	2.206	0 132	0 442	0612	
195	195	7 017	2.558	2 056	2 212	0.139	0 455	0618	01
200	200	7 036	2 558	2 059	2 215	0 116	0 433	0 599	0:12
205	205	7 061	2 565	2 068	2 218	0:142	0 458	0 628	01
210	210	7 051	2 565	2 07 1	2.222	0 132	0 452	0618	0:1
.215	215	7 029	2:561	2 062	2 215	0 129	0 455	0 621	0.1
220	220	7 048	2 565	2 068	2 222	0 132	0 458	0 621	
225	225	7 048	2 571	2 078	2 231	0 129	0 458	0 624	011
230	230	7.048	2 577	2 084	2 238	0 135	0 468	0 631	011
235	235	7 064	2 571	2 078	2 231	0 139	0 4681	0 643	017
240	240	7 054	2 571	2 075	2 222	0 132	0 468	0.634	0 12
245	245	7 061	2 57.7	2 081	2 236	0 129	0 468	0.637	012
250	250	7 095	2 583	2 093	2 244	0 129	0 471	0 64	01
255	255	7 095	2 583	2 093	2 244	0 129	0 474	064	014
260	260	7 095	2 589	2 097	2 247	0 132	0 477	0 647	014
265	265	7 099	2 589	21	2 25	0 132	0 477	0 647	014
270	270	7 105	2 592	2 103	2.25	0 132	048	065	015
275	275	7 105	2 592	2 103	2 253	0 132	0.483	0 653	0 15
280	280	7 117	2 598	2 106	2 257	0 135	0 487	0 656	016
285	265	7 108	2 602	.2 109	2:26	0 129	0 487	0 656	016
290	290	7 111	2 602	2112	2 26	0 135	0 49	0 659	01
295	295	7 099	2 605	2 112	2.26	0214	0.487	0 662	0 10
300	300	7.117	2 602	2 112	2 263	0 211	0.487	0 639	0 19
305	305	7 199	2 62	2 122	2 276	0 214	0 49	0 659	019
310	310	7 19	2 623	2 128	2 279	0 218	0.496	0 662	018
315	315	7 184	2 626	2 134	2 262	0 221	0.499	0 665	0 18
320	320	7 184	2 629	2 141	2 266	0 221	0 502	0 672	0 18
325	325	7 193	2 6 3 6	2 144	2 288	0.214	0.502	0 678	0 20
330	330	7.221	2 6 3 2	2 147	2 288	0.218	0 506	0 678	0 19
335	335	7 303	2 651	2 15	2 301	0.221	0.512	0 681	016
340	340	7 36	2.688	2 188	2 345	0 221	0.512	0 681	0 16
345	345	7 347	2 691	2 194	2 349	0 224	0 518	0 688	0 18
350 355	350	7 347	2 688	2 191	2 342	0.221	0 518	0 691	0 (3
360	355	7 341	2 685	2 191	2 339	0.216	0 518	0 694	0 19
365	360	7 341	2 688	2 191	2 342	0 221	0.521	0 694	0 19
370	365 370	7 341	2 688	2.194	2 345	0 224	0.525	6 697	0 19
375	375	7 366	7 691	2 194	2 349	0 224	0 525	- 07	0.20
360	380	7 382	2 694	2 197	2 352	0.224	0 52a	07	0 1
385	385	7 369	2.697	2 201	2 352	0 23	0 5 3 4	0.703	0 19
390	390	7 366	2.703	2 204	2 358	0 227	0 534	0 707	0 19
395	395	7 369	2:703	2 207	2 358	0 233	0 5 3 7	0.71	0 11
400	- 400 -	7 373	2 706	2 2 1	2 361	0.233	0.54	0713	0 19
405		7 376	2 706	2213	2 364	0 237	0 544	0716	0 18
410	410	7 373	2 706	2 2 1 5	2 354	0 233	0.544	0716	0 19
415	415	7 398	2,706	2 2 16	2 364	0.24	0.55	0 725	0 19
420	420	7 379	2 706	- 2213 -	2 368 2 364	0 233	0 547 0 547	0 725	0 19
								0 722	0 19

GeoSyntec Consultants

				6/7/99.14				Well T	Baro.
lapsed	Total	Wéll	V/ell	Well	Well .	Viell	Well	SD	Pressure
Tune	Elapsed.	PW	OW .	KS .	KD.	27	0.547	0725	0 191
475	425	7 373	271	2 22	2 368	0 237	- 0553	0.72	0 18:
	436	7 385	27,13	2 22	2 371	0 24	- 6331-	6 725	0 186
435	435	7 398	2713	2 22	2 171	0.54		0 725	0 186
440	440	7 401	2716	2.223	2 374	0 24	0556	0725	0 181
445	445	7 417	27.19	2 226	237	0.243		6725	0 181
456	450	7 404	2 719	2 229	2 30	0 24 -	6 553	0 729	0 151
455	455	7 401	2719	2 229	2 38	0 243	0.556	0 729	0 166
460	460	7 41	2 722	2 229	2 38 2 38 3	0 246	0 5 5 5	0 732	0 186
405	465	7 417	2 722	2 232	2 383	0 246	0 556	0 725	0 151
470	470	7 404	725	2:232		0 246	0 555	0 735	0 191
475	475	7 407	2 725	2 235	2 383	0 243	0 556	0732	0 201
480	480	7414	2,725	2 232	- 2 383	0 24	0 556	0.732	0 2Co
485	485	7 398	2 722	2 232	2 383	- 6 2 al	0 559	0 732	0 206
450	490	7 417	2 725	2 235	2 387	0 243	0.563	0 735	0.206
495	495	7 417	2 728	2 238	2 39	0 237	0 539	0 735	0.206
500	506	7 429	2 7 2 6	2 238	2 39	0 237	0.559	0 7 35	0.211
505		7.417	2 728	5 5 3 8	2 39	0 237	0 559	0 735	0 21
510		7 42	2 728	2 238	2 393	0 237	0 563	0 732	0 217
515	515	7 436	2 728	2 238	2 393	021	0 7.61	0.732	0 222
520		7 429	2 728	2 242	2 393	023		0 733	0 237
525		7 4 4 8	2 726		2 193	0.227	0 563	0.738	0.242
530		7 448	2 7 7 8	2 242		0.227	0 559	0 732	0.251
539		7 442	2 728	2 242		0.224	0.559	0 735	0 25.
540			2 728	2 245	2 3 9 3	0 224	0.566	0 735	0 247
- 54			2731	- 2 245 -	2 395	0 224	D 565	0 735	
\$5			2 734	2 251	2 350	0 227	0 569	0.738	
10			2 737	2 2 2 4 6		0 221	0 566	0.735	
5.			2 734		2 396	0 221	0 566	0.73	0 26
56			2 734	2 248	2 3 3 6	1	0 566	073	
57			2.734	2.248	2 396		0 566	,;;	
57			2 737	2 251	2 3 9 9		0.569	413	0 27
58			2737	2 254	2 399		0 572	073	B 0.27
58			2 737	7 251	2 399		0 575	0 74	
59			2 737	2 254	7 40		0,575	074	1 0 27
55			2.74	2 254	2 40		0 576	0 74	
60			2:74	2 254	7 40		0 582	074	
60			2 737	2 261	2 40			0.74	
6			2.75	2 261	2.40			074	6 0 2
	15 61		2743	2 261	2 40		1	0:75	
	20 62		2747	2 261	2 40		1	5.74	
	62		- 2:743 2:743	7 261	2 40			077	
	30 63		2 743	2 261	2 40			077	
	35 63			2 261				07	
	40 64		2743	2 261				07	
	45 64		2741	2 264	241			07	
	50 6		2 747		241			0 7	
	55 6		279		1			0.7	
			2 /47		2 4				
		55 7 458	27	2 267	24			0.7	
		70 7 464	27		2.4				
		75 7 464	27		1				
		80 7 458							
		65 7 464	2/4					4 07	
		90 7 454			1			4 07	
		95 7 461	274						57 0
		00 7 461							54 0
		05 7 464							54 0
	710	10 7 464							76 0

GeoSyntec Consultants

	Cor	istant Rate Agi	nier Test at We	II PW, NL	ndustries Site,	edricktown	, NJ, 7 June	1999	
				6/7/99	14:20	Well	Well	Well	Baro.
Elapsed	Total	Well	Well	Well	Well	27	28	SD.	Pressure
Time	Elapsed	PW	. WO	KS	KD	- 21			7 0 338
720	.720	;	2 75	2 27	2 4 1 8	0.2			
725	725	7.467	2 75	2 27	2418			6 07	
736	730	7 48	2 753	2.267	2 422	0.25			
735	735	7 461	2 756	2.276	2 425				
	740	7 495	2 756	2 276	2 425	0.25			
	745	747	2756	2 276	2 425	0 25			
750	750		2 756	2 276	2 425	0 25			
755	755	7 489	2 759	2 2 7 5	2 428	0 25			
760	760		2 759	7 275	2 431	0.55			
765	765		2 762	2 283	2.431	0.2			
770	770		2 765	2 265	2 434				
	1		2 762	2 283	2 434				°1
7.75			2 762	2.286	243			61 07	
780		1	2762	2 283		0.2		61 0	
785			2 762	2 28	2 43			313 0.7	
790			2 765	2 286		0 2		513 07	
799		1	2 768	2 289				616 07	
800				2 28			56 0		77 0:35
-805			2 768		1				77 0 36
810	81		2:768	2 28				616 07	776 0 36
815	i ii		2,771	2:29				619 07	776 0 36
82		7.521	2 768	2:29					776 0 37
82			2 768	2.29					0 37
			2 768	2 29					773 0 3
	<u> </u>		2 768	2 28	2 44				773 0 36
84			2 771	7 29					775 03
				2 29	5 2 4				779 03
84		7 533	2 774	2 29	5 2			-	
.05				2 29	i				
85				2.29		15 D		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
86		60 7 499		2.29		15 O			779 03
86		65 7 52		2 2	,°ı		256		785 0 3
87		70 7 51		2 3				667 0	785 03
8	75 8	75 7 52						0 635	762 0 3
	8 0	80 7 55		2 3					765 0 3
- 8	85 8	85 7 55		23					789 0 3
		90 7 54	2.781						785 0
		95 7 53	6 2 784						792 0
		7 55	5 2784						789 0
		751	7 2 784						0 792 0
		7.55							0.789
		7 56							
							284		
						(63)	287		
							287		0 798 0
		930 750					0 287		0 795 0
		935 7 56					0 287		0 758 0
		940 75				469	0 29		0 801 0
1	545	945 73				169	0 287		0 804 0
	550	950 76				472	0 25		0 801 0
	955	955 75			* : : !	475	0 29	0 651	0 804
	960	\$60 75					0 25	0 651	0 804
	965	965 76				475	0 293	0 654	0 804
1	970	970 76				479		0 657	0 804
	975	975 7.5	56 2 E			479	0 293	0 657	0 808
	980	980 75				482	0 297		1080
		985 76				467	0 297	0 661	
1	985				324 2	482	0 297	0 657	
L	990		93			482	0 297	0 661	808
	995	3,70				485	0:297	0 661	0811
	1000		**1			482	0 293	0 661	0.814
	1005					488	0 297	0,661	0811
	1010	1010 7	84 2 6	U 0	• • • • • • • • • • • • • • • • • • • •				

Page 6

GeoSyntec Consultants

	Con	stant Rate Ag	uifer Test at	Well PW, NL In	dustries Site, P	edricktown, N	J. 7 June 191	9	
Elapsed	Total			6/7/99	14:20				
Time	Elapsed	Well	Well	Well	Well	Viell 1	Well	Well 1	Baro.
1015		PW	_ ow	KS	KD	27	28	SD SD	Pressure
1020	1015	7615	2 808	2 33	2 488	0 3	0 664	0.811	0 30
	1026	7 602	2 808	233	2 488	0 3	0 664		0 35
1025	1025	7 615	2 608	2 33	2 488	0 284	0 651	0 801	- 1
1035	1030	7 606	2 811	2 3 36	2 491	0 30 3	0 667	0 814	c 35
	1035	7 602	2 811	2 333	2 495	0.3	0 667	- 6 614	
1040	1040	7 602	2 811	2 336	2 495	0 363	0 67	- 6814	0.29
1045	1045	7 621	2814	2 375	2 498	0 303	- 67	- 881	0 28
1050	1050	7 599	2814	2 339	2 498	0 303	0 67		0 28
105%	1055	7 634	2 814	2 339	2 501	0 306	0.676	0 817	0.28
1060	1060	7 609	2.818	2 343	2 501	0 369	0 676	0 817	0 28
1665	1065	7 647	2:821	2 343	3 504	0 303	0673	0.817	0 27
1070	1070	7 628	2 621	2 346	2 507	0.309		0 817	0 26
1075	1075	7 615	2.824	2 346	2 507	0 361	0 6 7 6	0 817	0 25
1080	1080	7 631	2 824	2 346	2 507	0 338	0 683	0.82	0 25
1085	1085	765	2 824	2 345	251		0 68	0 62	0 25
1090	1090	7.621	2 827	2 349	251	0 338	0 676	0 /:17	0 25
1095	1095	7631	2 8.	2 349		0 344	0.683	0 ! .!	0 25
1100	1100	7615	2 824	2 345	251	0 338	0 69	0 823	0.74
1105	1105	7628	2 824	2 349	2 51	0 341	0 66	0.82	0 24
1110	1110	7615	2 8 3 3		2 51	0 34 1	0 683	1 823	0 21
1115	:::5 -	764		2 349	2 51	0 347	0 689		0 23
1120			2 827	2 352	2514	0 347	0 689	0 826	0 23
1125	1125	764	2 824	2 352	2 514	0 336	0.68	083	0 23
1130		7 634	2 827	2 355	2:517	0 344	0 686	0 823	0 23
1/35	1136	7618	2 827	2 352	2 5 1 4	0 341	0.683	0 826	0 23
	1135	7 628	2 827	2 355	2 517	0 347	0 686	0 826	0 23
1140	1140	7 624	2 636	2 352	2'517	0 335	0 68	0 826	
1145	1145	7 659	2.63	2 355	2 52	- 6 354 -	0655	0 836	0 23.
1156	1150	7 643	2 827	2 352	2 517	0 336	0683	0 826	0 21
1155	1155	7 643	2.83	2 355	2 52	0 341	0686		0.23
1160	1160	7 656	2 827	2 355	2 52	0 331		0.63	0.23
1165	1165	7 637	2 833	2 355	2 523	0 341	0.68	0 8 3 3	0:23
1170	1170	764	2 83	2 355	7 2 523	0 335	0 685	0 823	0.23
1175	1175	7 65	2 6 3	2 355	2 523		0.683	0 817	0.23
1180	1160	7 624	2 833	7 358		0 338	0 689	0 826	0 21
1185	1185	7 653	2 833	2 356	2 526	0 338	0 689	0.83	0.23
1150	1190	7 656	2 833	235e -	2 526	0 328	0 683	0 839	0 23
1195	1195	7 653	7 833	2 356	2 526	0 335	0 692	0 826	0 23
1200	1200	7 637	2.833		2 526	0 325	0 686	0.83	0 23
1205	1205	7 614	7 8 3 3 1	2 358	2 526	0 335	0 689	0 826	0 23
1216	1210	1866-		2 358	2 5.29	0 325	0 686	0.823	0 23
		764	2 636	2 361	2 529	0 341	0699	0 842	0 24
	1220 -		2 8 3 6	2 365	2 529	0.312	0 676	0 026	- 623
1225	1225	7669	2.836	2 361	2 529	0 325	0 685	0 817	023
-1256	1236	7 662	2 8 3 6	2:365	2 533	0 328	0 695	0 8 36	0 23
1235	1235	7 665	2 8 3 9	2 365	2 5 16	0 131	0 695	- 8877	0 2 3
		7 546	2 811	2 355	2 51	0 338	0 762		0 23
- 1245	1245	7.675	2 6 13	2 358	2.576	0 535	702	0 626	0 23
1250	1250	7 662	2 842	2 356	2 * 33	0 325	0 695	0 836	0 23
1255		7 691	2 845	2 371	2-545	0 328	0699	0 839	
1260	1255	7 662	2 8 3 6	2 371	2 539	0 316	0689	0 845	0 23
	1260	77	2 846	2377	2.552	0 328	0559	0:82	0 24
1265	1265	7 684	2 651	2.38	2 552	0 372	6775		0 24
1270	1270	7 684	2 845	2377	2 548	0 376	0.721	0 836	0 24
1275	1275	7 681	2 8 4 5	2 374	2 545	0 3/s		0 814	0 24
1280	1280	7 684	2 845	2377	2 548		0,695	0 626	0 25.
1285	1285	7 691	2 848	- 2377 -	2 548	0 36	0711	0 616	0.25
1290	1290	7 706	2 845	2374		0 357	0 702	0.83	0,252
1295	1295	7 669	2 845	2 371		0 347	0699	0.63	0.26.
1300	1306	7 684	2 845	2374	2 545	0 35	0 702	0.833	0 263
		777	2 848		2 548	0 354	0 705	0.617	0.26.
1305	1305			2 374	2 552	0 347	0 705		

Page 7

GeoSyntec Consultants

				6/7/99	idustries Site, P				
Elapsed	Total	Well	Well T	Well	Well	Well	Well		
Tirne	Elapsed	PW	- ow	KS	KD KD	27	28	Well SD	Baro.
1310	1310	771	2 845	23//	2 548	0 338	0 699	0 839	Pressur
1315	1315	7 697	2 845	2 374	2:548	0 338	0699	0 814	0 2
1320	1320	7 694	2 842	2 371	7 545	0 322	0 686	0 82	0.2
1325	1325	7 697	2 842	2 38	2 548	0 331	0 699	083	0.2
1330	1336	7 681	2 842	2 38	2 545	0 328	0 692	0811	- 6
1335	1335	7 713	2 845	2 384	2:548	0 335	0.702	0 826	- 6
1340	1340	7713	2 842	2 38	2/548	0 316	0.689	0 823	- 6
1350	- 1350	7 694 7 694	2 845	2:384	2 548	0 312	0 686	0 826	0
1355	- 1355	7715	2 848	2 387	2 55.	0.344	0718	0 836	0
1360	1360	777	2.848	2 387	2 552	0 316	0 695	0 758	0
1365	1365	7 694	2.84	2 38	2 552	0.316	0 699	0 833	
1376	1370	777	2 851	2 38	2.552	0 366	0 686	0 826	0
1375	1375		2 842	2 3 7 7	2,555	0 325	0.711	0 861	0
1380	1380	711	2 851	2 387	2 545 2 558	0 325	0.657	0 601	0
1385	1385	7732	2 85 1	2 39	2 561	0 376	0.708	0 833	0
1390	1393	7 7 38	2 858	2 39	2 564	0 363	0 699	0 826	Ů.
1395	1395	7719	2 858		2 561		0 721	0.842	0
1400	1400	7 71	2 851	2 387	2 561	0 376	0.716	0 845	- 0
1405	140*	7 722	2 851	2 384	2 558	0 363	0.706	0 808	0
1410	1410	7 7 35	2 851	2 384	2 561	0 354	0 699	0.83	D
1415	1415	7 741	2 855	2 387	2 564	0 36	0 708	0 836	0
1420	1420	7 725	2 858	2 39	2 564	0 363	0.71.1	0 845	0
1425	1425	7 732	2 655	2 387	2 564	0 36 0 366	0711	D 849	0
1430	1436	7 728	2 858	2 36	2 568	0 369	0 718	0 852	- 0
1415	1435	7735	7856	2381	7 568	0 344	0 724	0 639	0
1440	1440	7 732	2 858	2 384	2 564	0 335	0 699	0 814	
1445	1445	7 719	2.658	2 387	2 568	0 354	0 711	0.839	0
1450	1450	7 744	2 861	2 393	2 574	0 35	0 714	0.845	0
1455	1455	7 716	2 655	2 374	2 561	0 274	0 645	0.842	0
1460	1460	7 722	2 864	2 396	2 577	0 372	0 737	0.864	0
1465	1465	7 735	2 867	2 391	2 577	0 334	0 721	0.852	0.
1470	1470	7 738	2 858	2 384	2 568	0 309	0 686	0 808	- 0
p i								- 0:000	
0	1470 001	6 251	2 743	2 387	2 498	0 376	0749	0 867	0
0 0083	1470 0083	6 188	2,74	2 39	2 498	0 376	0 745	0 874	- 6
0 0166	1470 0166	6 128	2 734	2 387	2 495	0 376	0 749	0 867	
0 025	1470 025	6 669	2 731	2 387	2 491	0 376	0 749	0 871	 0
0 0333	1470 0333	6 005	2 725	2 384	2 488	0 376	0749	0 871	
0.05	1470 0416	5 946	2719	2 384	2 488	0 376	0.749	0.874	0
0.0583	1470 05	5 886	2713	2 384	2 482	0 376	0 749	0874	0
9920	1470 0666	5 826 5 763	271	2 384	2 479	0 376	0 749	0 877	0
0 075	1470 075	3 /63 5 763	2 703	2 384	2 475	0 376	0 749	0.877	0
0 0833	1470 0833	5 643 -	2 697	2 384	2 472	0 376	0.749	0.66	0
0 0916	1410 0916	5 3 66 -	2 685	2 384	2 466	0 376	0.749	0.88	0 :
0 1	1470 1	5 527	2.682	2 38	2 466	0 376	0 749	0.67/	0
0 1083	1470 1083	5 473	2 676	2 387	2 463	0 376	0.749	0.877	0
0 1166	1470 1166	5 416	2 669	2 384	2;456 2:453	0 376	0 749	0.877	0 :
0 125	1470 125	5 363	2 663	2 184	245	0 376	0 752	0 874	0;
0 1333	1470 1333	5:312	2 657	- 2 :::1 -	243	0 376	0 749	0.874	.0`
0 1416	1470 1416	5 262	2 651	7 38	2:444	0 376	0 752	0.88	- 0 :
0 15	1470 15	5 215	2 645	7361	2441	0.376	0.752	88.0	0 :
0 1583	1470 1583		2619	2 384	2 434	0 376	0.752	0 88	0 :
0.1666	1470 1666	5 126	2 612	2 387	2 431	0.376	0.749	0 883	0.1
0 175	1470 175	5 082	2 629	2 384	2 428	0.376		0 883	0 1
0 1833	1470 1833	5 041	2 623	2 38	2 425	0 376	0.749	0 86	0.3
0 1916	1470 1916	- 3	2 617	2 384	2418	0 376	0 752	0 883	0.3
0.2	1470 2								

GeoSyntec Consultants

	Co	onstant Rate Ag	uifer Test at	Well PW, NL	Industries Site,	Pedricktown,	NJ, 7 June 19	99.	
Elapsed	Total	Well 1	Well 1	6/7/9	9 14:20				
lane	Elapsed	PW -	OW	Well	Well	Well	Well	Well	Baro
0 2061	1470 2083	4 921	2 605	K 5 2 38	KD	27	28	SD	Pressure
0 2166	1470 2166	1 884	2 598	2 38	2.412	0 376	0.752	0.88	0 373
0.225	1470 225	4 846		2 384	2 409	0 379	0 752	0.56	0 373
0 2333	1470 2333	4 808	2 569	2 377	2 403	0 376	0.752	0.863	0 373
0 2416	1470 2416	4 767	2 583	2 38	2 399	0 375	0 752	0 886	. 0 373
0.25	1470 25	4 729	2:577	2 377	2 196	0 379	0 752	D-886	0 373
0.2583	1470 2583	4 691	2 571	2 38	2 393	0 375	0.752	0.883	0 373
0.2666	14/0.2666	4 653	2 565	2577	2 36	0 376	0 752	0 886	0 373
0 2/5	1470 275	4619	2.556	5 39		379	0 752	D 68 1	0 368
0.2833	1470 2833	4 584	2.555	2 38	2374	0 376	0752	0 886	0 37e
0 2916	1470 2916	4 549	2 546	2 377	2371	0.376	0 745	0 886	0 373
د 0	1470 3	.4 518	2 543	2 374	2 368	0 376	0.752	0 88 3	0 373
0 3083	1470 3083	4 486	2 537	2 374	2 364	0 379	0.752		0 373
0 3166	1470 3166	4 458	2 531	2:371	2 358	0 376	0.752	0 883	0 368
0 325	1470 325	4 43	528	2 374	2 355	0 376	0.752		0 368
0 3333	1470 3333	4 401	2 521	2 374	2 352	0 376	0 752	0,893	0 365
0 35	1470 35	4 348	2 509	2 368	2:342	0 376	0745	0,883	0 373
0 3666	1470,3666	4:3	2.5	2 365	2:333	0 376	0749	7 68 0 C 68 0	0 378
0 3833	14/0 3833	4 253	2 491	2 371	2 326	0 376	0.745		0 378
0.4	1470 4	4 209	2 478	2:365	2 32	0 376	0746	0.89	0 373
0.4166	1470 4166	4 168	2 469	2 356	2 311	0 376	0 746	0 693	0 373
0 4333	1470 4333	4 127	2:46	2 361	2 301	0 372	0746	0 893	0 378
0 45	1470 45	4 089	2:45	2 152	2 295	0 372	0.746	0 89	0 373
0 4666	1470 4666	4 054	2 441	2 355	2 288	0 372	0 746	0 85	0 378 0 378
0.4833	1470 4833	4.017	2 429	2 352	2 279	0 372	0746	0 89	0 378
0 5166	14/05	3 979	2:42	2 349	2 276	0 169	0746	- 0 8 3	0 378
05333	1470 5166	3:941	2413	2 343	2 266	0 369	0743	0 893	03/1
0 55		3.9	2 404	2 346	2 257	0 165	0.743	Ō é·	0 372
05666	1470 55	3 059	2 395	2 339	2 25	0 369	0743	0 853	01/3
0 5833	1470 5666	3.618	2 386	2 336	2 244	0 366	0 74	0 85	0 373
0 30 3 3	1470 5833	3771	2 376	2 333	2 234	0 366	074	0 656	0 378
06166	1470 6	3 7 2 6	2 367	2 3 3	2 231	0 366	074	0 855	0 373
0 6 3 3 3	1470 6166	3 6 8 2	2 358	2 327	2 222	0 366	074	0 8 9 6	0,373
0.65	1470 65	3 6 3 6	2 349	2 127	2 212	0 366	0.74	0 899	0 368
0 6666	1470 6666	3 597 3 559	2 339	2 32	2 266	0 366	0737	0 893	0.378
0 6833	1470 6813	3 5 2 5	2 33	2 314	2 199	0 363	0737	0 893	0.374
07	1470 7		2 321	2 3 1 4	2 193	0 36 3	0737	0 893	0 376
07166	1470 7166	3 493	2 315	2,311	2 184	0 366	0737	0.893	0 378
0 7333	14707333	3 462	2 305	2 311	2 18	0 363	0737	0.693	0373
0.75	1470 75	3 4 3 6	2 296	2 302	2 171	0 36 3	0757	0 896	0 368
0:7666	1470 7666	3 392	2 29	2 302	2 165	0 363	0 737	0 899	0 373
0.7833	1470 7833	3 37	2 281	2 298	2 158	0.363	0737	0 896	0 373
0.8	14/08		2 2 6 8	2 289	2 152	0 363	0 733	0:893	0.366
0.8166	1470 8166	3332	2 259	2 286 2 279	2 146	0 36	0 73 5	0 896	0 373
0.8333	1470 8333	- 13131-	2 25	2 279	2 139	0 36	0733	0 893	0 373
0.85	1470 85	3 294	2 244	2 273	2 133	0:36	0733	0 896	0 373
0 Buoc	1470 8666	3 275	2 237	2 27	2 126	0 36	0733	0.89	0 378
0 8833	1470 8833	3 26	2 231	2 264	2 12	0 36	0 73	0 896	0 373
0.9	1470 9	3.241	2 225	2 257	2 114	0 36	073	0.896	0 373
0 9166	1470 9166	3.222	2 216	2 254	2 107	0 357	073	0 886	0 373
09333	1470 9333	3 206	221	2 251	2 095	0 357	0.73	0 896	0 373
0 95	1470.95	3 167	2 207	2 245	2 088	0 357	0 73	0.89	0 365
0 9666	1470 9666	3 168	2 197	2 236	2 085	0 357	0.727	0 89	0 368
0 9833	1470.9833	3 152	2 191	2 238	1079	0 354	0 73	0 896	0 373
	1471	3 134	2 185	2 235	2 073	0 357	073	0 886	0.376
12	1471 2	2 865	2 111	2 172	2 006	0 357		0 886	0 373
14	1471 4	2 525	2 031	2 109	1 936	0 357	073	0 877	0 373
16	1471 6	2 307	1 969	2 052	1.873	0 344	8711	0 861	0 378
							07111	0 001	0 373

GeoSyntec Consultants

		arantinale vd	iner lest at t		idustries Sile, P	edicktown, l	J. 7 June 199	9	
Elapsed	Total	Well	Well T	Gi7i99 Well					
Time	Elapsed	PW	OW	KS	Well KD	Well 27	Well	Well	Baro
18	1471 8	2 174	1 901	2 005	1819	0.338	28	SO	Pressure
2	1472	2 073	1.849	1 952	1 768	0 344	0.708	0 861	0)?
2.2	1472.2	2 001	1749	1 904	1 723	0 35	0718	0 861	0 37
2 4	1472/4	1 944	1 756	1 86	1,682	0 354		0 867	0.37
26	14726	1 897	1719	1813	1.644	0 347	0721	0 855	0.37
2.8	14728	1 853	1 682	1 775	1 606	0 335	0 702	0 849	0.37
	1471	1 818	1 667	1745	1377	0 328	- 6665	0 839	0 37
3.2	14/12	1783	1.673	1769	1545	0 335	- 8655	" 833	- 0 3
34	1473.4	1758	1 593	1.68	1 52	0 335	0 699	0 845	33
3 6	1473 6	1 733	1 568	1 649	1:495	0 341	0 699	0 845	0 3
3.6	1473-8	1711	1,546	1 624	147	0.347	0 702	0 845	0.3
4/2	1474	1 692	1:525	1 60:	1 447	0.341	0 699	0 842	0.37
474	1474 2	1 676	1 503	1 576	1.428	0:344	0.702	0 645	0 37
4.6	1474 4	1.66	1/485	1 561	1.406	0.347	0 705	0.652	0 37
4.5	1474 6	1 644	1 466	1 532	1 387	0:354	0 705	0.855	0:37
- 4.8	1474 8	1 629	1 451	1 538	1 371	0.354	0 705	0.845	0 3
5 2	1475	1613	1 432	1 523	1 352	0.344	0 695	0 8 36	0 37
54		1 594	1414	1 501	1 336	0.344	0 695	0 636	0 37
56	1475 4	1 581	1 401	1 479	1 324	0.347	0 695	0 839	0 37
3 8	1475 6	1 569	1 389	1 463	.1361	0 347	0 689	0.835	0 37
- 3 6		1 556	1 373	1443	i 295	0 347	0 689	0.835	0.38
6.2	1476 2	1 543	1 361	1 425	1 282	0 344	0 689	0.842	0 37
- 64	1476 4	1528	1 349	1 409	1,27	0 335	0.68	0.839	0:37
6 6	14766	1 505	1 336	1 397	1 257	0 331	0 676	0.836	0.37
6.8	1476 8	1 493	1 324	1381	1 244	0 325	0 667	0 833	0 37
	1477	1 483	1 305		1 235	0 335	0 676	0 623	0 37
72	1977 2	1 374	1 293	1 362	1 225	0 335	0 673	0,811	0 37
74	1477 4	1464	1 284		1212	0 336	0 676	0 804	0.37
76	1477 6	1 452	1 275	1 337	1 203	0 338	0 676	0.601	0 37
7 8	1477 6	1 442	- 1863 -	1 327	1 197	0 341	0 676	0.601	0 37
- 8	1478	1 433		1 305	1 187	0 338	0.67	0 798	0 37
8 2	1478 2	1 423	1 25		1 174	0 338	0.67	0 795	0 38
34	1478 4	1,414	1 241	1 308	1 168	0 344	0 673	0 796	0 38
- 66	1478 6	1,404	1 226	1 302	1 162	0 347	0 67	0 801	0 37
8.8	1478 8	1 398	1 225	1 289	1 155	.0 347	0.67	0 795	0 37
	1479	1392	776	1 2 7 7	1 146	0 344	0 67	0:798	0 37
9.2	1479 2	1 382	1 207	1 261	1 139	0 344	0 667	0.795	0 37
9 4	14/9 4	- 379 -	1 197	1 255	113	0.32	0 67	0 79.	0 37
96	1479 6	1 367	1 191		1124	0 35	0.67	0.798	0 38
9 8	1479 8	1 36	1 185	1.252	1117	0 35	0 67	0.792	0 37
16	1460	- 1351	1182	1:236	1 108	0 357	0.673	0:792	0 37
12	1482	1 266		1:236	1 104	0 36	0.673	0:789	0 38
14	-1181	1209	1 065	1:106	1 044	0 354	0 654	0:763	0 37
16	1486	1 149	1 018	1.059	0 949		0.638	0:744	0 18
18	1468	1 086	0 976	1018	0 908	0 341	0 623	0.713	0 37
20	1490	1.046	0 944	0 963	0 879	0 35	0 623	0 697	0 36
22	1492	1013	6160	0 949	0 847	0 35	0 597	1 691	0 38
24	1494	0 975	7.86	0 917	0,825	0 363	0 597	0 65 0 647	0 38
26	1496	0.947	0 861	0 895	08	0 3637	0 607		0 38
28	1498	0.915	0,833	0 864	0 774	0 354	0 572	0 65	0 38
30	1500	0 89	0.815	0.845	0 752	0 366	0.572	0 602	0 38
32	1502	0 858	0.787	0813	0 727	0 309	0 5 1 5	0 539	0 18
34	1504	0 836	0 771	0 801	0714	0 388	0 582	0 5 1 9	0 38
36	1506	0 814	0 744	0.785	0 698	0 385	0 569	0 59	0 38
38	1508	0 795	0 728	0 766	0 682	0 366	0.547	0 564	0 19
40	1510	0 779	0 713	0 747	0 67	0 372	0 544	0 552	0 38
42	1512	0 76	0 697	0 731	0 654	0 376	0 544	0 549	0 38 0 39
44	1514	0 745	0 682	0715	0 641	0 363	0 521	0 536	0 39

Page 9

GeoSyntec Consultants

-	Co	uistant Rate Ac	quilet Yest at	Well PW. NI	Industries Site.	Pedricktown,	NJ, 7 June 19	99	
Llapsed	Total			6/1/	9,14 20				
		Well	Well	Well	Well	Well	Well T	Well	Bato
Time	Elapsed	PW	ÓW	KS	KD	27	28	50	Pressure
46	1516	0 732	0 673	0.706	0631	0 385	0 537	0 539	0 393
	1516	0 7.19	0 663	0 656	0 622		0 505	0 365	0 398
50	1520	0.713	0 654	0 684	0 609		0 525	0 5 3	
52	1522	0 694	0 639	0 665	0 5 6 7		0 495		0.403
54	1524	0 688	0633	0 655	0 587	0 36	0 455	0.52	0.403
56	1526	0 669	0.62	0 645	0 581		0 562		0 401
5.8	1528	0 654	0611	0633	0571			0 508	0 396
€0	1530	0 65	0 6 0 5	063	0 565	0 386		0 441	0 398
62	1532	0634	0 585	0611	0 545		0 509	0 511	0 398
64	1514	0637	0 589	0611	0 3 4 6		0 452	0 454	0.403
66	1530	0.625	0 577	0 602	6343		0 49	0 492	0 413
68	1518	0612	0 571	0 592	0533	0 391	0 496	0.505	0 403
Step 2				- 0 332	0 3 3 3	0 382	0.48	0 476	0 403
	1518 001	2 31	0 621	0.560					
0.0083	1536 0083	2 357	0 6 2 9	0 569	0 546		0 477	0 467	0 398
0 0166	1538 0166	2 402		0 586	0 546	0 372	0 474	0 47	0 403
0 075	1538 025		0 6 3 3	0 586	0 552		0 474	0.47	0.398
0 0 3 3 3	1538 0333	2 509	0 6 3 9	0 586	0 552	0 372	0 477	0 47	0.403
0 0416		2 556	0 648	0 589	0 555	0 169	0 477	0.467	0 403
	1538 0416	2 616	0,654	0 596	0 562	0 369		0:473	0 403
0 05	1538.05	2 708	0 66	0 592	0 565	0 169	0 474	0 47	
0 0583	1538 0583	2 768	0 666	0 592	0 565	0 366	- 6 477	847	0 408
0 0066	1538 Occ6	2:75	0 673	0 556	0 571				0 408
0 0 / 5	1538 075	2 887	0.675	0 592	0371	0 369 D 369	0 477	0.47	0 408
0 0833	1536 GB33	2 947	0 688	0 592	0 577		0 474	0.47.3	0 403
0 0916	1538 0916	2 985	0 654	0 596		0 369	0.474	0 47	0 403
01	1518 1	3 067	07		0.577	0 369	0.474	0 47	0 408
0 1083	1538 1083	3 127	- 0 707	0.592	0 564	0.369	0.474	0 47	0 405
0 1166	1538.1166	- 3 134	0716	0.592	0 584	0·366	0.477	0 467	0 403
0 125	1538 125	3 187		0.599	0 593	0 369	0.48	0 457	0 403
0 1333	1538 1333	- 3 291	0.722	0.550	0.593	0.366	0:474	0 463	0 403
0 1416	1538 1416	3 32	0.731	0.596	0.6	0 366	0.4/4	0 473	0 40à
0 15	1538 15		0.737	D 596	0 608	0 366	0 471	0 467	0 406
0 1563	1538 1583	3 351	0.744	0.599	0 609	0 366	0.471	0 463	0 408
0 1666		3 38	0 753	0.595	0616	0.366	0 471	0 467	0 413
0 175	1538 1606	3 439	0 759	0.556	0619	0 366	0 47 1	0 46	0 403
	1538 175	3 449	0.765	0.596	0.625	0 366		0 467	
0 1833	1538 1833	3 487	0 775	0.599	0 628	0 363	0.471	0 46	0 396
0.1916	1538 1916	3:537	0.781	0.599	0631	0 366	0 468		0.408
0.2	1538-2	3:534	0 787	0:599	0 6 3 8	0 366	0 474	0 463	0 413
0.2083	1538 2083	3 597	0 796	0,599	0 641	0 366		0.46	0 403
0.2166	1538 2166	361	0 802	0 605	0 644		0 468	0 457	0 408
0.225	1538 225	3613	o ščě i	0 603	0647	0 366	0 471	0 457	0 413
0 2333	1538 2333			0 605		0 366	0.471	0 457	3040
0 24 16	1538 2416	3 685	0 824		0 654	0 366	0 471	0 457	0,403
0.25	1538 25	3 736	0 63	0 605	0 66	0 366	0 466	0 46	0.403
0.2583	1538 2583	3 692		0 603	0 66	J 31.6	0 468	0 46	0.466
0 2000	1538 2666		0 8 3 6	0 605	0 666	0 366	0 468	0 457	0.403
0.275	1538 275	3 793	0 84.	0 608	06/3	0 366	0 465	0 457	0.401
0 3 0 13	1538 2833	3 805	0 649	Ō 6ĊB	0 6 7 6	0 366	0 466	0 454	0.403
0 2516	1538 2916		0 855	0.608	0 675	0 366	0 471	0 457	0413
0.310	1538 3	3 881	0 861	0611	0 685	0 366	0 469	0 457	0411
-0.3083	1538 3083	3 875	0 6	0.608	0 689	0 366	0 466	- 6 3 5 5	0 40 1
0 3166	1538 3166	3 878	0.676	0.611	0 695	0 366	0 465	0 454	0 35E
0 325		3 557	0 875	0.608	0 701	0 363	0 468	0 457	0 403
0 3333	1538 325	3 96	0.886	0611	0 704	0 363	0 468	0.454	0.408
	1538 3333	3 972	0 892	0614	0711	0 363	0 468	0 451	
0 35	1518 35	4 054	0 904	0 618	071,	0 36 3	0 468	0 448	0.468
0 3666	1538 3666	4 067	0 917	0618	0.73	0 363	0 466		0.408
0 3833	1538 1833	4 124	0 936	0618	9733	0'363	7.161	0 451	0.403
0.4	1538 4	4 199	0 941	0618	0.743	0 363		0 454	0.413
0:4166	1538 4160	4 203	0.547	0.624	0 755	0 363	0 460	0 451	0 408
~						0 303	0 464	0 451	0 403

	Čo	nslant Rate A	quifer Test at	Well PW, NL	Industries Site, f	Pedricktown, f	VJ. 7 June 199	9	
- C12-1-1-1					9 14:20				
Elipsed Time	Total Elapsed	Well	Well	Well	Well	Well	Well	Well	Baro.
0 4333	1538.4333	43	OW 0 963	NS:	KD	27	28	SO	Pressure
0 45	1538.45	4313	0 963	0 627	0 762	0 363	0 464	0 457	30 t G
3338 0	1538.4666	4 3 4 4	0 972	0.627	0 768	0 363	0 464	0 451	0 40t
0 4833	1538 4833	443	0 994	0633	6 177	0 363	0 464	0 45 1	C 4G3
0.5	1538 5	4 395	1 003		0 784	0 363	0 464	0 446	0 403
0 5166	1538 5166	1455	1 015	0633	0 .,	0 36 3	0 464	0 454	0 405
0 5 3 3 3	1510 5333	4 505	1 025	064	0 803	0 363	0 464	0 451	0 463
0.55	1538 55	4 552	1 637	0663	e160	0 363	0 464	0.454	. 0 4CE
0 5666	1518 3666	4 575	1 046	0 646	0 828	0 363	0 468	0 454	0 403
0 5833	1538 5833	4 553	1 055	0 649	0 835	0 363	0 464	0 451	0 408
0.5	1538 6	4 597	1 065	0 649	0 841	0 363	0 464	0 451	0 463
06166	1535 6166	4 698	1 074	0 652	0 851	9 363	0 464	0 451	0 403
0 6 3 3 3	1538 6333	4.657	1 083	0 655	0 86	0 363	0 468	0 454	0 413
065	1538 65	4,752	1 092	0 662	0 863	0 363	0 468	0 454	0 413
0 6666	1538 6666	4 732	1 102	0 665	0 873	0 363	0 468	0 454	0 403
0 6833	1538 6833	4 764	1111	0 665	0 882	0 363		0 451	0 403
0.7	15387	4 824	1,12	0 668	0 889	0 363	0 464	0 451	0 413
0 7166	1538 7166	4 839	113	0 674	0 898		0.468	0 (5)	0 413
0 7333	1538-7333	4.89		0 678	0 904	0.363	0.468	0 454	0 403
0:75	1:18.75	4 874	1145	0 678	0 911	0 363	0 466	0 448	0 398
07666	1538 7666	4 896	1 154	0 684	0 92	0 151	0 468	0 454	0 403
0 7833	1538-7833	4 959	1 163	0 687	0.927	0 363	0.468	0.445	398
5 8	1538 8	4 969		069		0 363	0.464	0.451	0 403
0.611	1538 8166	4 597	1182	0 693	0 936	0 363	0.464	0 451	0 403
0.61	1538 8333	501	1188			0 363	0.464	0 451	0 405
0 65	1538 85	5847	1 197	0 703	0 949	0 363	0 464	0 446	0 398
0 8666	1538 8666	5 098	1 207	0 766	0 965	0 36 3	0.466	0:445	0 396
0 8833	1536 6633	5 066	1213		0 971	0 363	0.468	0 448	0 406
0 5	1534.5	5-129	1 219	0 712	0 974		0:468	0 445	0 398
0 9166	1538 9166	5 104	1 225	0 722	0 98	0 363	0 468	0 451	0 403
0 9333	1538 9333	5 111	1 234	0 722	0 99	0 36	0:464	0 451	0 156
0 95	1538 95	5 158	1 244	0.728	0 997	0 36	0 464	0 454	0 403
0 9666	1538 9666	5 155	1 25	0:725	1 003	0 36	0 461	0 448	0 458
0 9833	1538 9833	5 205	1-256	0 731	1 012	0.357	D/461	0 451	0:403
	1539	5 202	1 262	- 67 31	1016	0.357	0 461	0 454	0.408
1:2	1519.2	5.4	1 346	0 783	1 089		0 461	0 451	0.408
1:4	1539 4	5 574	1 417	0 816	1 158	0 36	0 461	0.454	0.401
1.6	15396	5,712	1,478	0 886		0 363	0 468	0 46	0 438
18	1539 8	5 766	1:525	0 936	1 212	0 363	0 471	0 46	0.403
	1540	5 82	1574	0 98	1 26	0 347	0 455	0 451	0 408
2 2	1540.2	5 892	1614	1 034	1311	0 319	0.427	0.432	0 403
2 4	1540 4	5 895	1654	1 075	1,352	0 312	0.42	0 413	0 408
26	1540 6	5 942	1.691	1 122	1 39	0 306	0.417	0 416	0 40t
2.8	1540 8	5 5 6 5	1 722		1.431	0 322	0 433	D 429	0 413
3	1541		175	1 16	1 46	0.328	0 4 3 9	0 422	0 413
3.2	1541	6 10%	1778	1.23	1 469	0 316	0 423	0 416	0 413
3:4	1541 4	6 094	1 802	1 245	1 52	0 309	0 427	0 404	0418
3.6	1541 6	6 144	1 827	1 261	1 568	0 109	0 423	0 394	0 418
3 6	1541 8	6 188	1 845	1 277	1 593	0 312	0 427	0 394	0 408
	1542	6 191	1,87	1 28	1 6 1 9 1		0 4 36	.0 394	0416
4 2	1542 2	6 251	1 852	1266	1 638	0 325 0 328	0 439	0 397	0 418
44	1542 4	6 239	1 91	1 289	1 66	0 328	0 446	0 407	0418
4 6	1542 6	6.56	1 929	1 289	1 679	0 338		0 41	0 413
4 8	1542 6	6 302	1 947	1 293	1 698	0 344	0 458	0 416	0.413
5	1543	6 292	1 966	1 299	1 72		0 464	0 435	0 423
5 2	1543 2	- 6 308 -	1 581	1 302	1736	0 372	0 49	0 47	0416
5 4	1543.4	6 321	1 994	1 308	1752	0 398	0 515	0.492	0 418
3 6	1543 6	6 396	2 005	1 305	1765	0 372	0 518	0 498	0 418
5 8	1543 8	6 358	2 018	1 302	774	0 372	0 496	0.482	0 416
					1 1 1 1	0.334	0.48	0.476	0 423

GeoSyntoc Consultants

	Cu	nstant Rate Ac	unfer Yest at	Well PW, NL I	ndustries Site, P	edncktown, l	IJ. 7 June 199	19	
Ulapsed	Total	10. 4		6/7/99	14:20				
Tune		Well	Well	Well	V/ell .	Well	Well	Well	Baro.
- 111100	Elapsed 1544	PW	OW	KS	KD	27	28	ŚD	Pressure
6 2	15(4.2	6 349	2 034	1 305	1 79	0 366	0.49	0 476	0416
64	1544.4	6 38	2 04 3	1 11:6	Té	0 354	1:477	0 467	0 421
- 66	1544 6	6.418	2 059	1 106	1 812	0 357	6 483	0 473	0.423
6.8	1544-8		2 068	1 308	1 825	0 357	0 487	0 47	0.423
7		6.459	2 08	1 311	1 838	0 36	0.45	0.476	0.423
72	1545 1545 2	6.462	2 099	1 315	1 854	0 388	0 515	0 458	0.418
74	1545 4	6 465	2 108	1316	1 866	0 407	0337	0 523	0416
76	1545 6	6 494	2 12	1 318	1 875	041	0.54	0 5 3 5	0:418
7.8	1545 8	6 51	2 129	1 321	1 888	0 414	0 544	0 546	0418
	1546	6 494	2 139	1 324	. 1 895	0 414	0 544	0 552	0:423
8 2	1546 2		2 145	1 321	1 904	041	0 544	0 555	0418
84	1546 4	6,506	2 154	1 327	1 914	0 407	0544	0 558	0 4 1 6
86	1546 6	6 541	2 167	1 324	1 923	041	0 544	0 555	0416
8 8		6 5 3 5	2 173	1 324	1.93	0.407	0 5 4 4	0 564	0413
	1546 8 1547	6 56 3	2 179	1 327	1 916	0.401	0.54	0 558	0418
9 2	1547 2	6 566 6 56	2 185	1 324	1 946	0.395	0 531	0 564	0413
94	1547 4		2 194	1 756	1 952	0 391	0 528	0 568	0418
	1547 6	6 566	2 197	1769	1 958	0 391	0 528	0 555	0 413
96		6 582	2 207	1775	1 965	0 388	0 531	0.552	0 418
	1547 8	6 61	2 213	1 701	1971	0 385	0 528	0.555	ō 418
10	1548	6 604	2 219	1 794	1 58	0 382	6 5 2 5 1 -	0 549	
12	1550	6 661	2 275	1 854	2 0 3 8	0 363	0 518	0.539	0 413
14	1552	6 717	2 318	1 901	2 079	0 363	0531	0 542	- 6413
16	1554	6.79	2 352	1.939	2114	0 354	0 525	0 552	0 413
18	1550	6 787	2 379	1 967	2 139	0 344 -	- 6 551	0336	
26	1558	6 821	2.464	1 996	2 168	0 15 -		0 5 6 3	0 416
2.	1560	6 847	2:429	2 021	2 19	0.357	0.553	 0 6 1 5 1	0 423
24	1562	6 872	2.441	2 034	2 203	0 325	0534	0 6 3 4	0427
	1564	6 9 16	2 466	2 056	2 225	0 344	0 556	064	0 423
28	1566	6 916	2·478	2 068	2 241	0 336	0 559	0637	0 423
30	1568	6 941	2 491	2 081	2 25	0 331	0.555	0 647	0 423
32	1570	6 954	2 509	2 097	2 266	0 144	0 582	0 665	0 429
34	1572	6:992	2 518	2 104	2.219	0.338	0 582	0 665	0 416
36	1574	6'982	2.638	2 119	2 288	0 335	6 585	0 691	- 0 4 2 3
38	1576	7 01	2/537	2 128	2 301	0 338	6554	0.694	
40	1578	6.988	2 543	2 138	2 304	0 319		0 697	0 423
4.2	1580	6.995	2 552	2141	2 307	0 309	0 585	0 664	0 423
- 44	1582	7 054	2 561	2 153	2 323	0 522	06	0 716	0 429
46	1584	7:042	2 568	2 16	2 326	0 312	0604	0.71	
48	1586	7 048	2 374	2 106	2 333	0 312	06	0715	0416
50	1568	7.07	2 577	2 172	2 339		0607		0 416
52	1590	7 064	2 586	2 179	2 345	0 316		0.71	0 4 18
54	1592	7 058	2 592	2 185	2:352	0 309	8813 }-	0 732	0 416
56	1594	7 092	2 592	2 185	2:355	0 303	0 6 6 7	0 729	0416
58	1596	7 095	2 595	2 191	2 361	0 305	0619	0 735	0 423
60	1598	7 092	2 605	2 197	2 364	0 309		0 725	0 :
62	1600	7 083	2 608	2 201	2 368	0 312	6632	- 0 7411	0 427
64	1602	7 086	2611	2 201	2 371	0.3	0623		0 423
60	1604	7 089	2.611	2 207	2 377	0.291	- 6656	0 754	0.423
t 8	1606	7 124	2617	221	2 38	0.25		0736	0.421
76	1608	7/13	762	2213			6626	0 754	0.421
7:	1610		2,623	2 216	2 387	- 63	0638	0 763	0.425
74	1612	1124	2 626		2 39	0 25		0 /63	0.421
76	1614	7 099	2 629	2 2 2 2 3	2 19	0 284	0629	0 754	0.429
78	1616	7 1 36	2 632	2 226	2 356	0 297	0 6 4 5		0.425
60	1618	7 124	2 632	2 226	2 396	0 297	0645	0.757	0 429
82	1620	713	2 6 3 6	2.232	2 399	0 293	0645	0 766	0 434
84	1622	7 14	2639	2 232	2 403	0 293	0648	0773	0 429
86	1624	7 14	2 6 19	2 232	2 406	0.281	0638	077	0 429
						V.541	0030	0 77	0 434

Page 13

				6/7/99	dustries Site, P			-	
Elapsed	Total	Well	Well	Well	Well	Well	Well T	Well I	Baro.
Tune	Elapsed	PW	ow	KS	KO -	27	28	-so	
88	1626	7 166	2 642	2 2 3 8	2 406	0 281	0642	0 763	Pressure
90	1628	714	2 648	2 242	2 409	0 303	0 661	0773	0:4
92	16 10	7 146	2 648	2 242	2 412	0 297	0 657	0 769	04
94	1632	7 162	2 651	2 245	2 415	0 29	0 651	0 779	04
96	1634	7 149	2 651	2 245	2 415	0 274	0 642	0 776	
98	1636	7 152	2 654	2 251	2 415	0 293	0 661	0:779	0.4
100	1638	7 146	2 648	2 245	2 412	· 0284	6651	0.779	0.4
105	1643	7 136	2 054	2 248	2 418	0 297	0 664	0.779	0.4
110	1648	7 158	2 65 /	2 254	2 425	0 29	0 664	0.782	
115	1653	7 162	2 66 3	2 25 7	2 426	0 325	0.654	0 785	04
120	1658	7 196	2 666	2 264	2 434	0 338	0.67	0 758	04
125	1663	7 203	2 673	2 267	2 437	0 338	0 673	0 756	04
130	1668	7 19	2 676	2 27	2 444	0 138	0 676	0 801	
135	1673	7 206	2 679	2 273	- 2 3 3 3 -	0335	0 67	0 758	0 4
140	1678	7 7 7	2 682	2.276	2 45	0 341	068	0 808	0.4
145	1683	7 150	2 688	2 283	2.45	0 331	0 676		0.4
150	1688	7 19	2 679	2 279	2 437	0 335	0 68	0 808	0.4
155	1693	7 209	2 682	2 273	2 444	0 331	0 68		0.4
160	1698	7 225	7 694 -			0336		0814	04
165	1703	7717					0 689	0.614	0
176	1708	7 2 7 6	2 7	2 295	2 466	0 3 3 8	0 69.	0.817	0.4
175	1713	7 247 -			2 406	0 335	0 69:	0.823	ö é
180		774	2703	2 29	2 469	0 338	0 692	0.87	0.4
185	1723	7 256	2 706	2 298	2 472	0 341	0 699	0 626	0.4
		7215		2 302	2 472	0 141	0 699	0.63	0.4
195		7256	271	2 298	2 372	0 336	0 699	0 0 1 1	0 4
200	1736	7 243	- 2713	2 305	2 462	0 347	0.765	0 633	0 4
205	1743	7 256	2716	2 308	2 482	0 344	0 705	0:836	0.4
210	1748	7 247	2719	2.311	2 485	0 347	0 708	0.839	0 4
215	1753	7 259		2 311	2 488	0 35	0 708	0.839	0 4
220	1758	7 25	2719	2.314	2 468	0 35	0.711	0.842	0.4
225	1763			2 314	2 468	0.347	0.71:1	0 842	0.4
230	1766	7.284	2722	2314	2 488	0.347	0:714	0 845	0.4
235	1773		2 725	2 317	2 491	0 347	0.714	0 849	0 4
240	1778	7 284 7 266	2 725	2 32	2 495	0 35	0.714	0 849	0.4
245	1783		2 725	2 32	2.455	0 35	0714	0 852	0.4
250	1788	7 269	2.728	2 32	2.498	0,347	0 714	0 849	0.4
255		7 262	2 728	2 32	2 498	0 35	0.718	0 849	0.4
260	1793	7 288	2 728	2:324	2/501	0 35	0-718	0 855	0.4
260 265	1798	7 278	2731	2 324	2 501	0 35	0.721	0 855	0 4
	1803	7 363	2 731	2 324	2 501	0 35	0 721	0 855	0 4
270	1808	7 284	2 731	2 327	2.504	0 35	0 721	0 855	0.4
275	1813	7 284	2.731	2 327	2-504	0 35	0 724	0 855	0.4
280	1816	7 278	2.734	2 327	2,504	0 35	0 724	0 855	0.4
265	1823	7 316	2,734	2 33	2 504	0 35	0 724	0 855	0.4
290	1828	7 313	2.737	2 33	2 507	0.354	0.73	0 858	0:4
295	1233	7 313	2:737	2 333	2,507	0.354	0.73	0 858	0.4
300	1818	7 268	2,737	\$ 333	2 51	0 354	073	0 861	- 04
305	1843	7 3	274	2 333	251	0:354	0.73	0 864	0.4
310	1848	7 341	274	2 336	2 51	0:357	0733	0 867	64
313	1853	7 306	274	2 336	2 514	0/357	0 733	0 864	0.4
320	1858	7 297	2 743	2 336	2 5 14	0 36	0 737	0 871	0.4
325	1861	7 316	2 743	5 338	2 514	0 363	0:74	0 671	0,4
330	1868	7 363	2 743	5 239	2517	0.366	0.74	0 874	0.4
315	1873	7 257	2 743	2 339	2:517	0 369	0 743	0 874	0:4
340	1878	7 31	2'743	2 339	2 517	0 369	0 74	0 874	0.4
345	1883	7 316	2 743	2 339	2517	0 369	0.74	D 877	0.4
350	1888	7 322	2 7.47	2 343	2517	0 372	D 743	0 877	0:4
355	1893	7 336	2743	2 343	2 517	0 376	0 746	0 877	0.4
360	1898	7 294	2 743	2 119	2 52	0 376	0 743	0 677	04

GeoSyntec Consultants

	Cor	stant/Rate Aq	uiler Test at	Well PW. NL I	ndustries Sile, P	edricktown, N	J. 7 June 199	9	
Elapsed				6/7/99	14:20				
Tune	Total	Well	Well	Well	Well	Well	Well	Well	Baro.
	Elapsed	PW	ow	KS	KO	27	28	SD	
365	1903	7 303	2 747	2 343	2:52	0 376	0 746	0 88	Pressure
370	1908	7 319	2 747	2 343	2 52	0 376	6 743		0.459
375	1913	7 30 3	2 75	2 346	2 523	0 376		0.87.7	0 454
380	1916	7 316	275	2 346	2 523		0 746	0.88	0.459
385	1923	7 322	275	2 346	2 523	0 376	0 746	88 0	0 454
390	1928	7 313	2 75	2 346		0 379	0 745	0 883	D 454
395	1933	7 316	- 2 95	2 346	2 5 2 3	0:379	0 746	0 88	0 459
400	1938	7 328		2 346	2 523	0.379	0 746	0 68	0 459
405	1943	7 354	2 75	2 346	2 523	0 379	0 746	0 66	0 459
410	1946	7 354	2 753		2 526	0 379	0 745	0 86	0 459
415	1953	- 731 -	275	2 349	2 526	0 379	0 749	0.86	0 454
420	1958	7 338	275	2 349	2 526	0.382	0 752	0 88	0 454
425	1961			2 349	2 526	0.382	0 749	0 88	6 454
430		7 319	2 753	2 349	2 526	0 382	0 749	0 88	0 454
	1968	7 325	2 753	2 349	2 529	0 382	0 752	0 88	0 454
435	1973	7 332	2 753	2:349	2 529	0 375	0 752	0 88	
440	1978	7 3 3 8	2 753	2.349	2 529	0 379	0 749	0 88	0 455
445	1983	7 354	2,753	2:349	2 529	0 382	0.752		0 459
450	1988	7 135	2,753	2 349	2 5 2 9	0 382		0 88	0 459
455	1991	7 328	2.753	2 349	2 529		0 752	0 68	0 454
460	1998	7 341	2753			0 385	0 755	0.883	0 454
465	2003	- 737 5	2 753	2 352	2:529	0 385	0 749	0 883	0 454
470	2008	7344	2:756	2 352	2-529	0 386	0.755	0 883	0 445
475	2013	7 382		2:352	2 533	0 388	0 759	0.883	
480			2:756	2:352	2.533	0 391	0.755	0 886	0 444
485	2018	7 351	2:756	2 352	2 5 3 3	0 388	0.759	0 886	0 445
	2023	7 338	2 756	2 352	2 533	0 388	0 759	0 866	0 145
490	2028	7 328	2 756	2 352	2 529	0 185			
495	2033	7:351	2 756	2 355	2:533	0 168	0.759		0 449
500	2038	7347	2 756	2 355	2.536	0 188		0 88ė	0 444
505	2043	7 391	2 756	2 355	2 5 36	0 395	0.759	0 856	E 444
310	2048	7 344	2 756	2 355	2 5 36		0 762	0.85	0 444
515	2053	7 366	2 756	2 355		0 395	0.762	0,89	0 4 1 9
520	2058	7 344	2759	- 2355 -	2 5 3 9	0 195	0 762	0 89	0 435
325	2063	7 357	2 759		2 539	0 395	0.765	0 893	0 434
530	2068	7 363		2 358	2 5 3 9	0 39ē	0 765	0.85	0 434
535	2073	7 354	2 759	2 358	2 539	0 395	0 765	0.89	0 429
540	2078		2 759	2 358	2 5 3 9	0 395	0 765	0 893	0 429
545	2083	7 335	2 759	2 358	2 539	0 358	0 768	0 893	0 425
550		7 36	2 759	2 358	2 539	0 395	0 762	0 89	0.425
555	2088	7 363	2 759	2 358	2 542	0 398	0 768	0 89	
	2091	7 347	2 759	2 358	2 542	D 355	0 765	0 893	0:423
560	2098	7 369	2,759	2 356	2 539	0 396	0 765		0.418
565	2103	7 36	2 759	2 358	2 5 6 2	0 398		0 89	0.421
570	2108	7 363	2 759	2 358	2 542	0 401	0 768	0 896	0 423
575	2613	7,362	2,759	2 358	2 542		0 768	0.856	0 416
580	2118	7 351	2 762	2 361	- 2342	0 401	0 768	0.893	0.413
585	2123	7 354	2 762	2 361		0 401	0771	0 69	0 466
390	2128	7 351	2 759	2 361 -	2 545	0 404	0 771	0.893	0.403
595	2133	7 344	2,762	2 361	2 545	0 401	0771	0 89	0 403
600	2138	7 369	2 762		2 5 4 5	0 404	0 774	0 893	0 356
605	2143	7 369	2 762	2:361	2 545	0 407	0.774	0 898	0 393
610	2148	7 366	2 762	2 365	2:545	0 407	0.774	0 896	0 393
615	2133	7 404		2 361	2:548	0:41	0.774	0 896	0.393
620	2158		2 762	2 365	2 546	0 414	0.778	0 899	0 386
625	2163	7 369	2 762	2 361	2.548	0.41	0.778	0.902	0 388
630		7 363	2762	2:361	2:545	0 407	0.774	0.899	0 393
	2164	7 36	2 759	2 36i	2.548	0 464	0 777	0 896	
615	21/1	7 376	2 762	2 361	2.545	0 40/	- 6771		0 393
640	2178	7 376	7 762	2 361	2545	 8771-	0778	0 896	0 393
645	2163	7 373	2 762	2 361	2 548	- 0 4 0/ -	0 774	0 896	0 368
650	2188	7 376	2 762	2 361	2 5 4 8	041		0 896	0 393
655	2193	7 385	2 762	2 361	2 548	0.414	0.778	0 896	0 393
					E J-0]	Q:414[0.778	0 899	0 393

Page 15

					dustries Sile, P	PUTICATOWN,	13, / Julie 139	9	
lapsed	Total	Well	Well T	6.7/99					
Time	Elapsed	PW	OW	Well KS	Well	Well	Well	Well	Baro
660	2198	7 354	2 762	2 361	KD 2 552	0 414	28	SD	Pressur
665	2203	7 354	2 762	2 361	2 552	0 414	0:778	0 899	0 1
676	2208	7 382	2 762	2 365	2 552	0:417	0.781	0.856 0.502	0 3
673	2213	7 376	2 762		2 552	0 414	0778	0 899	0.3
680	2218	7 36	2 762	2 365	2 552	0 417	0781	0 899	01
685 690	2223	7 388	2 765	2 365	2 552	0 417	0 781	0 899	- 01
693	2228	7 376	2 762	2 365	2 552	0 417	0 761	0 899	- 0
700	2213 2238	7 407	2 765 2 762	2 365	2 555	0 414	0.761	0.898	0 :
705	2243	7 401	2 762	2 368	2 555	0.417	0781	0 902	0 :
710	2248	7 39 1	2 765	2 165 2 368	2 555 2 555	0.417	0,784	0.905	0 :
715	2253	7 414	2 762	2 365	2 555	0.417	0 784	0 902	.0:
720	2258	7 388	2 762	2/365	2 555	0417	0 781	0 902	0 :
725	2263	7 395	2 765	2 365	2 555	0.414	0.761	0 902	0
730	2268	7 373	2 765	2 368	2 558	0.417	0:761	0 502	0
735	2273	7 395	2 765	2 368	2 558	0.417	0.787	0 902	0
740	2278	7 439	2 765	2 368	2 558	0 42	0 787	0 905	0
745	2283	7 429	2 768	2 366	2 361	0 423	0 787	0 903	0
750	2288	7 385	2 768	2:368	2 561	0.426	0 79	0 905	- 0
755	2293	7 362	2 768	2 371	2 561	0 426	0 79	0 908	0:
760	2298	7 385	2 765	2 371	2 561	0.426	1860	0 905	
765	2303	7 373	2 768	2:371	2 561	0 429	0 79	0 908	
770	2308	7 373	2 768	2 371	2-561	0 429	0 79	0 908	0 :
775	2313	7 414	2 768	2 371	2 561	0 423	0 787	0 905	
780 785	2318	7 414	2 768	2 368	2 561	0 426	0.79	0 905	
790	2321	741	2.768	2 371	2 561	0 423	0.79	0 908	- 0
795	2328	7 382	2.768	2 371	2 561	0 426	0.79	0 908	0
800		7 385	2:766	2 371	2.564	0.426	0.793	0 908	0:
805	2343	- 7 111	2 768 2 771	2 371	2 564	0 426	0.793	0 908	0
810	2348	733		2374	2 568	0 429	0.793	0 908	ρ.:
815	2353	7407	2774	- 23/2 1-	2:568 2:57 i	0 429	0.797	D 899	0 :
820	2358	7 454	277	- 2373 -	2 571	0 429	0 797	0 915	0 :
825	2363	7 417	2 774	 2 374	2571	0 433	0 797	0 915	0:
830	2368	7 461	2 777	- 23 55-	2374	0 436	0 797	0 915	0-1
635	2373	7 426	2 777	2.38	2 574	0 436	0 8	0 918	0
840	2378	7 4 3 6	2 777	2 38	2 574	0 439	0 803	0918	0 3
845	2383	7 445	2 777	2 384	2.574	0 439	0 803	0 918	0:
850	2386	7 451	2 781	2 384	2 577	0 442	0 806	0 921	- 6
855	2393	7 414	2 781	2 384	2577	0 489	0 806	0 921	- 0
860	2398	7 442	2 781	2 387	2 57.7	0 493	0 806	0 921	0.3
870	2403	741	2 781	2 384	2 577	0 493	0 806	0 924	0.3
	2408 2413	7.458	2 781	2 384	2:58	0 493	0 806	0 924	0.3
880	2418	7.426	2 781	2 387	2 577	0 496	0 809	0 924	0.3
		7.436	2784	2 39 2 39	2:58	0 496	0 809	0.924	0.3
890	2428	7423	2 784	2 39	2.58 2.583	0 496	0 809	0.927	0.3
895	2433	7445	2 784	2 39	2 583	0 496	0 809	0.927	0.2
900	2438	7 439	2784	2 393	2 583	0 499	0.609	0 924	0.2
905	2443	7 464	2 784	2 393	2 567	0 499	0 809	0 924	0.2
910	2448	7 442	2 784	2 393	2 587	0.496	0.812	0 924	0.2
915	2453	7.47	2787	2 393	2 587	0 499	0 812	0 927	0.2
920	2458	7.47	2 787	2 396	7 59	0 302	0 816	0 927	0.2
925	2463	7 451	2 793	2 396	2 587	0.499	0812	0 927	02
930	2468	7 445	2 787	2 191	2 59	0.502	0816	0 927	- 02
935	2473	7 473	2 787	2:396	2 593	0.502	0 8 16	0 927	- 0 2
940	2478	7 473	2.787	2 396	2.593	0:499	0 812	0 927	02
950	2483	7 502	2 787	2 399	2:593	0.502	0 819	0 927	02
300	2400	7 448	2 767	2 356	2,593	0 502	0 816	0 927	0.2

GeoSyntec Consultants

	Co	onstant Rate A	quifer Test al	Well PW, N	Industries Site.	Pedricklown	NJ, 7 June:	1999	
Elapsed	Total			6/7/5	9 14.20				
Inne	Elapsed	Well PW	Well	Well	Well	Well	Well	Well	Baro.
955	2491	7 461	_ ow	KS	KD	27	28	šö	Pressure
960	2498		2 787	2 399	2 593	0 505	0819	0 927	0 211
965	2503	7 461	2 787	2 399	2 596	0 508	0 822	0 927	0 211
970	2508	747	2 79 2 793	2 399 2 402	2 596	0 499	0 616		0,206
975	2513	7 451	2 79	2 402	2 599	0 508	0 822		0 201
980	2518	7 47	2 793	2 402	2 599	0512	D 828		0.156
985	2523	7 461	2 793	2 406	2 602 2 602	0512	0 825		0 191
990	2528	7 489	2 796	2 406	2 606	0512	0 828		0.186
995	2531	7 533	2763	2 406	2 666	0 512 0 508	0 828		0 181
1000	2538	7 514	2 756	2 409	2 606	0 508	0 822 0 835		0 (8)
1005	2543	7 464	2 796	2 409	2 606	0518	0 835		0.176
1010	2548	7 5 39	2 796	2 409	2 609	0.521	0 835		0,171
1015	2553	7 499	2 793		2 609	0515	0 828	0 937	0,171
1050	2558	7 467	2 796	2 409	2 609	0 521	0 835		0.176
1025	2563	7 464	2 796	2 409	2612	0 515	0 828	0 937	0 171
1036	2568	7 492	2 796	2 412	2512	0 524	0 641	0.937	0 171
1035	2573	7 502	2 796	2 409	2 6 3 9	0512	0 825	0927	0 171
1010	257e	7 464	2 796	2 409	7612	0 305	0 622		
1045	2581	7 502	eet 5	2 415	2615	0 518	0 831	0.931	0 171
1050	2568	7 527	2 799	2 412	2615	0518	0.838		0 166
1055	2593	748	2 799	2:412	2615	0.505	0.822		0 161
1060	2598	7 502	2 799	2.412	2 615	0.503	0.828	0 94)	0 161
1665	2601	7.511	2.759	2 412	2615	0 505	0.822	0 943	0 161
1070	2605	7.508	2.802	2:415	2618	0 521	0.822	0 937	0 156
1075	2613	7 508	2-802	2 415	2618	0 521	0.836	0 94	0 146
1080	2618	7 527	2 802	2 412	2618	90508	0.828	0 934	0 151
1085	2623	7511	2 799	2:415	2618	0 516	0 831	0.934	0 150
1090	2628	7:543	2 759	2 412	2616	0 502	0.819	0.94	0 151
1095	2633	7 527	2 799	2.415	2 621	0518	0 838	0.937	0 151
1100	2638	7.533	2.759	2 415	2 621	0 521	0 841	0 931	0 151
1105	2643	7:511	2 802	2418	2 621	0512	0 835	0 943	0 156
1110	2648	7 502	2 799	2418	2 621	0 518	0 838	0 934	0 146 0 146
1115	2653	7:514	2.799	2415	2 621	0 502	0 8 2 6	0 934	0 141
1120	2658	7 536	2 814	2 418	2 644	0 502	D 831	0 937	0 141
1125	2663	7 499	2811	2 428	2617	0 508	0.838	0 937	0 141
0111.	2668	7 502	2 811	2 428	2 634	0 524	0.85	0 94	0 13
1135	2673	7-521	2 811	2 426	2 6 3 4	0 508	0 838	0 953	0 126
1140	2678	7 5 3 9	2 805	2 428	2 6 3 1	0 312	0.838	0 946	0 121
1150	2683	7:524	2 808	2 424	2631	0 508	0 8 18	0 943	0 116
	2688	7517	2 808	2 424	2631	0 515	0841	0 931	0 111
1155	2693	7 502	2 808	2 418		0 505	0 8 3 5	0 934	0 111
1160	2698	7.53	2 799	2 421	2 631 2 631	0 456	0 825	0 943	0 121
1176	2703 2708	7 558	2811	2 424	2 634	0 518	0841	0 937	0116
1175	2708	7 517	2.805	2 421	2631	0 518	0 841	0 943	0131
1180	2718	7 565	2 808	2 424	2631	0 518	0 844	0 946	0 126
1185	2723	7 514	2 611	2 4.76	2 6 3 7	0 54	0 863	0 937	0131
1190	2728	7 552	2 808	2 424	2 637	0 534	0 857	0 931	0 126
1195	2733	7 536	2 811	2 428	2 637	0 54	0 863	0 546	0 126
	2738	7 574	2:805 2:808	2 424	2 6 3 4	0 5 1 5	0 841	0 931	0 131
1205			2 808 J	2 421	2 6 3 4	0 499	0 8 2 8	0 94 3	0 121
1210	2748	7 52	2 808	2 428	2.64	0 534	0 86	0 975	0 126
1215	2753	7 546	2 805	2421	2634	0 505	0 8 3 5	0 927	0.126
1220	2758	8 021	2 885	2434	2614	0 515	0 844	0:934	0 126
1225	2763	8 028	2 9 16	2:461	2 707	0 521	0.854	0 95	0 126
1230	2768	8 078	2 9 2 9	2 501	2 742	0.512	0 841	0.931	0 126
1235	2773	8 084	2.938	2 522	2 752	0 505	0 844	0 946	0,126
1210	2778	8 087	2,944	2 522	2 761	0.518	0.86	0 934	0.126
1245	2783	8 087	2 95	2:535	.2 764	0 496	0.841	0 965	0.126
				2,015	2 774	0 527	0 873	0 943	0 121

GeoSyntec Consultants

	Con	stant Rate Ag	uner Test at l		dustries Site, P	edricktown, h	lJ, 7 June 199	19	
era				6/7/99					
Elapsed Time	Total	Well PW	Well OW	Well	Well	Well	Well	Well	Baro.
1250	2785	8 (35)	2 953	KS	KD	27	28	SD	Pressur
1253	2793	8 103	2 956	2 532	2 774	0.496	0 844	0.95	0
1260	2798	8 128	2 956	2 538	2 117	0 508	0 86	0 965	0
1265	2803	8 128	2 956	2 5 3 5	278 2777	0.496	0 85	0 965	.0
1276	2808	8 122	2 563	2544	2763	0.477	0 8 3 8	0 962	0
1275	2813	8 109	2 966	2:547	2 786	0 508	0 86	0 95	0
1280	2818	8 105	2 963	2:547	2783	0.515	0 869	0.959	0
1285	2823	6 147	2 565	2 547	2 786	0 486 O 48	0.847	0 959	0
1290	2828	8 116	2 972	2 554	2 79	0.553	0838	0.975	0
1295	2833	8 113	2 975	2 554	2 79	0.527	0 879	0 94	0
1300	2838	8 109	2 969	2551	2 79	0 534	0.857	0.943	0
1361	2643	8 119	2 972	2 551	2 79		0.666	0.963	- 0
1316	2848	8 125	2 975	2 334	2796	0:537	0.869	0 978	- 0
1315	2853	0 135	2 573	256	2 799		0.857	1 006	0
1320	2858	8 122	2 975	2 5 5 4	2 796	0.521	0 854	0 959	0
1325	2863	8 122	2 581	2 563	2.802	0.537	0 873	0 561	0
1330	2868	8 125	2 978		2.802	0.549	0.882	0 956	0
1333	2871	6 120	2 978	<u>;</u> -	2.802	0.527	0.863	0 981	0
1340	2678	166	3 98i			0.518	0.857	0.96.2	
1345	2883	8 125	2 984		2,805	0.531	0 869		0
1350	2888	8 138		2 563	2.805	0 537	0.876	0 978	0
1355	2893		2 981	2.566	2 805	0.515	D 857	0 961	0
1360	2898	8-175	2 984	2 566	2 809	D 546	0 885	0 981	0
1365	2503	8 141	2 984	2 566	2 809	D 534	0 876	0 987	0
1370	2908	8 147	2 987	2 57	2 812	0.537	0.682	0 975	ō
1375	2913	8 15	2.984	2 566	2:812	0.515	0.863	0 975	0
1380	2918		2.987	2:573	2:812	0.531	0 879	0 978	0
1385	2925	6 131	2 984	2 566	2 812	0 521	0 869	0 984	- 0
1390		8 175	2 99	2 573	2 815	0 543	0.888	0 987	
1395	2928	8 163	2 99	2.573	7 815	0.524	0.876	0 991	0
	2933	8 138	2 99	2 573	2/6/2	0.537	0.656	1 003	0
1100	2938	8 1/:	2 99	2:573	2 818	0.524	0.876	0 966	- 0
	2943	8 16	2 993	2 579	2 821	0 546	0 901	0 972	
1410	2948	8 179	2 993	2 576	2 821	0 512	0 86	0 991	<u>5</u>
1415	2953	8 16	2 993	2 576	2 821	0.524	0.876	0 991	
1420	2958	8:194	2 991	2 576	2 824	0.515	0 869	0 981	0
1425	2963	8.188	3	2 582	2 828	0.546	0 901	0 591	0
1430	2968	8 169	3 .	2 582	2 828	0.54	0 895	1 003	
1435	2973	8 182	2 993	2.57	2 821	0 474	0.631	0 905	
1440	2978	8 175	3 006	2 588	2 831	0 556	0.51	1 035	0
1445	2983	0 213	3 003	2 588	2 631	0 549	0.901	1 022	
1450	2988	8.188	3 003	2 585	2,831	0 546	0.901	0 997	0
1455	2993	8 185	3 003	2 588	2 831	0.524	0 885		- ;
1460	2998	8 182	3 001	2 588	2 831	0.518	0 876	0 991	0
1465	3003	6 213	3	2 585	2:831	0 521	0 879	1 009	
1470	3008	6 204	3 003	2 582	2 831	0512	0 873		0
1475	3013	8 185	3 003	2 588	2 834	0 531	0 888	1 003	- 0
160	3018	8 169	3 003	2 568	2 834	0 521	0 885	001	- 0
1485	3023	8 191	3	2 568	2 831	0518	0 882	0 994	
1490	3028	0 175	3,003	2 588	2 631	0 524	0 888	0 587	
1495	101)	8 223	3,006	2 592	2 637	0 527	0 891	0 994	
1500	3038	8 175	3,006	2 392	2.84	0 527	0 891	0 994	
1505	3043	8 207	3 006	2 595	2.84	0 531	0 898	0 994	D
1510	3048	8 201	3 006	2 3 9 2	2 84	0 531	0 895		- 0
1515	3053	8 (9)	3 009	2 592	2 64	0 521	0 885	1.003	- ō
1520	3058	8.21	3 009	2 595	2 844	0 512	0 876	0 991	
1525	3063	8 194	3 009	2 598	2 844	0 575	0 698	1:009	
1530	3068	6 204	3 012	2 598	2 847	0 572	0 895	1	
1535	3073	8 267	3 015	2 601	2.85	0 568	0 891	1 006	0
1540	3076	8 232	3 015	2.601	2 85	0 568	0 895	1 022	

GeoSyntec Consultants

Elapsed				Nell PW, NL In 6/7/99	14:20				
Tune	Total	Well	Well	Well	Well	Well	Well	Well [Baro.
1545	Elapsed 3083	PW 8 188	ow	KS	KO	27	28	SD	Pressure
1550	3588	8 223	3 015	2 601	2 85	0 567	0 865	1 003	
1555	3093	8 232	3.012	2 601	2 85	0 559	0 885	1013	0 10
1560	3098	8 242	3.015	2 604	2 85	0 568	0.895	1013	0 1
1565	3103	8 226	3.015	2 604	7 853	0 578	0.901	1 013	-
1576	3108	8 198	3015	2 604	2 853	0 572	0 898	1013	
1575	3113	8 229	3015	2 604	2 856	0.568	0 895	1016	
1580	3118	8 213	3018	2 604 2 607	2 856	0 565	0.891	1 016	- 0
1585	3123	6 21	3 čiš		2 856	0.572	0.901	1013	0.0
1550	3126	8 238	3 018	2 604	2 856	0.568	0 895	1 013	
1595	3133	8 229	3 021		2 859 2 859	0 568	0 895	1 005	0.0
1600	3138	8 2 3 8	3 021	2 607	2 863	0 565	0 895	1 009	
1605	3143	8 22	3 021	2 607	2 859	0.572	0 501	1.019	0
1610	3148	8 232	3 021	2 607 +	2 859	0.565	0 898	1:016	0.10
1615	3153	8 235	3 021	2 607	2 863	0.565	0 898	1 019	0.10
1620	3158	6 238	3 021	2611	2 863	0.575	0 904	1 019	0 11
1625	3163	8 226	3 024	2611		0 572	0 901	1 019	0.1
1630	3168	8 248	3 024	2611	2 863	0.575	0 904	1.019	01
1635	3173	8 276	3 024	2611	2 866	0.572	0 901	1015	0 i
1640	3178	8 248	3 027	2 614	2 866	0 578	0 907	l ulii	01
1645	3183	6 286	303	2617	2 866	0 578	0 907	1 022	0.1
1650	3188	8 254	- 303		2 869	0 581	0 914	1 022	0.1
1655	3193	8 27	3 037	2617	2.872	0 587	0 914	1 028	0.1
1660	3198	8 292		2 62	2 872	0 581	0 91	1 025	0 1
1665	3203	8 267	3 037	2 62	2 675	0 597	0.92	1 028	0.0
1670	3208	8 251	3 04	2 623	2 878	0 60 3	0 976	1 035	00
1675	3213	8 286	3 04	2 626	2 878	0 606	0 923	1 041	0.0
1680		8 238	3 04	2 626	2 862	0 603	0 92	1 038	0.0
1685	3223	8 292	3 04 3	2 676	2.882	0 613	0 926	1 041	0
1650	3228	8 298	3 046	2 626	2 885	0.619	0 929	1.044	0 ((
1695	3233		3 046	2 629	2.865	0.622	0 933	1.017	
1700	3238	6 286	3.045	2 629	2 885	0 625	0.929	1 051	0
1705	3243	8.32	3 046	2 633	2 685	0 629	0 926	1 051	0 0
1710		8 273	3,049	2 633	2 888	0 632	0 933	1.047	0.0
1715	3248	8 323	3 049	2633	2 888	0 635	0 933	1 054	00
1720	3253	8 273	3 049	2 6 36	2 888	0 638	0.933	1 054	- 0
1725	3258	8 323	3 049	2 6 3 6	2 888	0 64 1	0 936	1 054	- 60
	3263	8 327	3.049	2 6 3 6	2 891	0 647	0 935	1 057	
1730	3268	8 301	3 049	2 639	2 891	0 654	0 935	1 063	- 0
1735	3273	8 276	3 049	2639	2 891	0 657	0 9 3 9 -	1 063	
1740	3278	8 308	3 049	2 6 3 9	2 891	066	0 942	166	
1745	3283	8 295	3 052	2 642	2 891	0 666	0 942	1 063	0.0
1750	3288	8 273	3 052	2 642	2 891	067	0 945	1 066	-01
1755	3293	8 32	3 049	2 642	2 875	0 673	0 945	1 666	0.0
1760	3298	8 273	3 049	2 642	2 888	0 673	0 945	C66	- 00
1765	3303	6 267	3 049	2 642	2 888	0 679	8 942	066	0.0
1776	3308	8 295	3 049	2 642	2 888	0 679	0 942	1 066	0 (
1775	3313	8 257	3 049	2 642	2 888	0 679	6 54 2	1 066	- 0 (
1780	3318	8 27	3 049	2 6 1 9	2 888	0 682	0 542	1 066	00
1785	3323	8 327	3 049	2 642	2 888	0 682	- 6 942	1 063	00
1790	3328	8 276	3 046	2 6 3 9	2 888	0 662	0 939	1 063	00
1800	3333	8 298	3 046	2 6 3 9	2 8 8 8	0 685	0 542	1 061	000
1800	3336	6 279	3 046	2 6 3 9	2 886	0 685	0 942	1 663	00
1805	3343	8 267	3 046	2 642	2 888	0 692	8 9 4 5 1	1:066	0 0
	3348	0 311	3 049	2 642	2 891	0 695	0 9 45	1 063	000
1815	3151	8 292	3 049	2.642	2 891	D 695	0 948	1 066	-0.06
1820	3358	8 283	3 049	2 642	2 891	0 701	- 6566 -	1 066	0.07
1825	3363	8 279	3 049	2 6 6 2	2,891	0.704	0 9 4 8	1 065	007
1830	3368	8 279	3 046	2 642	2.891	0 704	0 948	1 069	
1635	3373	8 273	3.046	2 642	2 888	0 701	0 945	1.003]	.0.0

GeoSyntec Consultants

				6/7/99					
lapsed	Total	Well	Well	Well	Viell	Well	Well	Well T	Baro.
Time	Elapsed	PW	ow ,	KS	KO	27	28	SO	Pressu
1840	3378	8 292	3,046	2 642	2 891	0.708	0.948	1 066	0
1845	3183	å 301	3 046	2 642	2 891	0.711	0 948	1 066	0
1850 1855	3388	8 308	3 049	2 645	2.891	0:714	0 952	1:066	0.
	3393	8 276	3 046	2 642	2.891	0.714	0 943	1 066	.0
1860	3398	8 264	3 046	2 642	2 891	0714	0 946	1.063	
1865	3403	8 283	3 046	2 645	2,891	0717	0 952	1,066	0.
1870	3408	8 311	3,046	2 642	2 894	0717	0 946	1 006	
1875	3413	8 295	3.046	2 645	2 891	0 717	D 948	1,666	
1005	3418	8 246	3.033	2 642	2 862	0717	0 948	1 066	
1890	3423	7 59	2 9 1 6	2 617	2 767	0.72	0 948	1 066	- 0
	3428	7 635	2 941	2 585	2 786	0.72	0 945	1 06	
1895	3433	7 829	2 9 3 8	2 576	2 79	0.723	0 945	1 057	0
1900	3438	7 842	2 935	2.57	2:786	0.723	0 942	1 054	0
1905	3443	7 842	2 932	2 563	2.786	0 723	0 9 3 9	1 051	0
1910	3448	7 842	2 932	2 56	2 786	0.73	0 945	1 051	- 6
1915	3453	7 895	2 932	2:56	2 786	0 73	0 942	1:051	- 0
1920	3458	7.914	2 932	2.56	2 786	0 733	0 945	1 047	
1925	3463	8 153	2 969	2 563	2 824	0 736	0 945	1:047	0
1930	3468	8 072	2 975	2 579	2 831	0 736	0 945		0
1935	3473	7 775	2 938	2 585	2 796	0 736	0 945	1 051	0
1.16	3478	7 64	2 888	2 566	2748	0 736		1.051	
1945	3483	7 631	2 876	2 547	2 736	0 739	0 942	.1 047	0
1950	3488	7 628	2 873	2 3 3 5	2 732		0 945	1 047	0
1955	3493	7 744	2 8 9 5			0 739	0 9 3 9	1 044	0
1960	3498	7 906	2 913	2 529	2 745	0 742	0 942	1 041	Ö
1963	3501	793		2 532	2714	0 742	0 9 19	1 041	0
1970	3508		2 929	2 544	2.79	0 745	0 942	1,041	0
1975	3513	7-983	2 941	2 557	2 802	0 745	0 942	1:041	0
1980	3516	7 968	2 941	2 563	2 802	0 749	0 945	1.044	0
1985		7 98	2 944	2 57	2 805	0 749	0 945	1 047	
1990	3523	7-961	2 944	2 573	2 805	0 749	0 945	1 051	0
	3528	7:97.7	2 947	2 573	2 805	0 745	0 945	1 051	
1995	3533	7 974	2 944	2 573	2 805	0 745	0 942	1:051	0
2000	3538	7 949	2 944	2 576	2 809	0 749	0 945	1.047	_ 0
2005	3543	7 952	2 941	2 576	2 805	0 745	0 942	1.051	-
2010	3546	7 974	2 941	2 573	2 805	0 749	0 942	1.047	ŏ
2015	3553	7 943	2 941	2 576	2 805	0 752	0 945	1 047	
2020	355e	7 917	2 938	2 573	2 802	0745	0 945	1 047	0
2025	3563	7933	2 9 3 8	2 573	2 802	0 752	0 945		0
2030	3568	7.933	2 9 18	2573	2 805	0 755	0 948	1 047	0
2015	3573	7 917	2 9 3 8	2573	2 803			1 047	. 0
2040	3578	7 952	2 935	2 573		0 761	0.955	1 051	. 0
2045	3583	7 961	2 9 3 8	2.573	2 802 2 799	0 758	0 952	1 051	· G
2050	3586	7 515	2:938	2:573		0 758	0 948	1 054	0
2055	3593	- [[[[2/935	2.573	2 802	0 761	0 952	1 051	0
2060	3598	7 98	2 935		2 802	0 761	0 952	1 051	0
2065	3603	7 987	2 935 2 935	2 573	2 802	0 761	0 948	1 051	.0
2070	3608	7 924		2:573	2 802	0 761	0 952	1 051	0
2075	3613		2 935	2 57	2 602	0.764	0 952	1 047	0
2080	3618	7 971 7 965	2 935	2 573	2 805	0 766	0 955	1 051	-0
2085	3623	7 963		2 57	2 802	0 764	0 952	1 051	
2090	3628 -	- /903 -	2 9 15	2:573	2 805	0.764	0 952	1 051	0
2095	3633		2.932	2 57	2 602	0.764	0 948	1 051	0
2100	3638	7 951	2 932	2 573	2 805	0 768	0 952	1 051	-0
2105	3643		2 9 1 2	2-57	2 802	0.768	0 952	1 051	- 0
2110		7 961	2 932	2 57	2 805	0.771	0 955	1 051	- 0
	3648	793	2 935	2 573	2 809	0 774	0 958	1 051	0
2115	3653	7 993	2 935	2 573	2 805	0.78	0.961	1 054	-0
2120	3658	7 958	2 935	2 573	2 805	0.78	0.958	1 057	- 0
2125	3663	7.55	2.932	2 573	2 805	0.78	0 958	1.054	0
2130	3666	7 943	2 932	2 573	2 805	0777	0 955	1 057	ŏ

GeoSyntec Consultants

	Cυ	ustant Rate Ai	juiter l'est at	Well PW, NL	Industries Site.	Pedricktown,	NJ. 7 June 19	99	
Elapsed .	Total			6/7/9	¥ 14.20				
Tone	Elapsed	- Well PW	Well DW	Well	Well	Viell	Well	Well	Bato
2135	30/3	7 924	2 929	KS	KD	27	28	SD	Pressure
2140	3678	7 314	2 929	2 57 2 57	2.805 2.502	0.774	0 955	1 054	0.00
2145	3683	7 94	2 929	2 57	2 605	0 777	0 555	1 054	0 217
2150	36.6%	7 515	926	257	2 805	0 783	0 558	1 054	0 22.
2155	369.3	7914	5 955	2 57	2 802	0783	0 555	1 054 1 054	0 227
2160 2165	3698	7 9 36	2 925	25/	2 602	0.783	0 955	T 054	0 22
2170	3703 3708	7 971	2.925	257	2 802	6783	0 555	1051	0 227
2175	3713	7 971	2:925 2 925	257	2 652	0 787	0.958	10:4	0 227
2180	3718	7 924	2 9 2 5	257	2 802 2 805	6 787	0 958	1 654	0 237
2185	3723	7 577	2 925	257	2 805	0 793	0 564 0 567	1 05 4	0 24:
5150	3728	7 552	2 929	2573	2 803	0 802	0 567	1 657 1 Ge	0 257
2195	3733	7'955	2 929	2 573	2:809	0 609	0 971	1 66	0 207
2200	3738	7 9 3 9	2.932	2 576	2 812	0 812	0 97 1	1663	0 28.
2205 2216	3743	7 949	2 932	2:579	2 812	0 815	0 974	1 066	0 287
2210	7753	7 955	2 9 1 2 2 9 1 2	2 579	2 812	0 815	0.971	1 766	0 287
2220	7,58		2 9 12	2 579 2 579	3 815	0 812	0.967	1 000	0 29.
2275	3/63	7 987	2 9 3 2	2 582	2 812 2 812	0 815	0 971	1 06b	0 29.
2230 2235	3760	7 971	2 952	2 579	2812	0 815 0 818	0 564	1 063	0 292
2231	3//3	7 946	2 9 12	2 562		0821	0 567	1 063	0.257
2340	3778	7.965	2 979	2 579	2 8 1 2	.D 8 i 8	0 567	1 060	0 :5:
2241	3783	7 943	2 929	2 582	2812	0 821	0 567	1 060	0.297
2250 2256	3768	7 952	2 929	2 579	2.812	0 821	1380	1 663	0 35.
5560	3791 3758	7 58	2 529	2 579	2 812	0816	0 964	1 66	0 30.
7.65	3603	7 993	2 9 3 5 2 9 3 8	2 582	2 816	0.824	0 97.1	1 063	0 307
2216	3608	- a 605	2936 2938	2 586 2 592	2 818	0.824	0.967	1 (6	0 307
2216 2215	3813	8 031	2938	2 592	2 82 i 2 82 i	0 824 0 824	0 971	1.063	0.31/
22'80	3818	7 996	2 9 35	2 595	2 821	0 826	0 567	1 063	0 312
2.65	36.23	7 971	2918	2 592	2 821	0.828	0 971	1:063	0317
2296	3858	7 977	2 9 18	2 595	2 621	0 831	- 6 674	063	0 325
2296	3833	1.95	3.932	2 595	2 8is	0 834	0 974	1 Obt	ō izh
2105	3836	8 015 7 996	2 9 18	2 595	2 821	0 834	0 97.	1 063	
2310	3646	7 971	2935	2 592	2 821	6.834	0 974	1 066	0 33 1
2315	3853		2 9 3 6	2 595 2 595	2 824	0.637	0 577	1/066	0 34 3
2120	3856	7 993	2 938	2 595	2 824 2 828	0.837	0 977	1.063	0 348
2325	3863	8 024	2935	2 598	2 824	0 843	0 977	1 G66	0 35 c
5130	3866	7587	2 9 15	2.558	2.821	::;;	0 977	1.066	0.35e
2335	3673	8 056	2 95	2 601	2 84	0.84.1	- 0 977	1,066	0 36 1
234	3876	7 9 19	2 525	2.598	2.815	0.843	6 5771-	1.665	0.358
	1881 8881	7 914	2 9 16	2:59.	2.809	0 84	0 571	1.065	0 353
2355	3893	7943	2 9 i	2:585	2 802	0 843	0 974	1 063	0.356
2360	3658	7 683	2304	2 576	2 802 2 799	0 647	0.974	1 663	0 366
2365	3903	7 914	2 904	2 576	2799	0 85	6977	1 066	0 366
2376	3906	7 867	2 901	2 576	2,750	0 85	0 577	1 063	0 366
2375	3913	79:	2 90 i	2 573	2 756	0 85		1 063	0 373
2380	3918	7 88	2 698	2 573	2/196	0 8 5		1 063	0 37 3
2350	1921	7 89.7	2 501	2 573	2.756	0 853	0 977	1065	3/E
2195	1933	7 9 3 5	2 898	257	2 756	0 853	0 977	1 063	0 372
2455	- 1916 -	7 566	2 696	2 573	2 756	0 853	0 974	1 66	0.165
2405	3943	7 883	—-;;;; -	2 573	2 796 2 796	0 856	0 977	1663	251.0
2410	3948	8 306	7 201 -	2 585	2 863	0 856	δ 577 0.577	1 (6)	0 39
2415	3553	0 305	2 584	2614	2 882	0 859	0.977	1 663	0 13.1
24.20	3958	8 361	2 991	2 6 3 3	2 854	0 862		1 669	0.358
	3963	8 314	2 996	2 6 4 5	2 894	0.bho	- 6 5 5 d -		

GeoSyntec Consultants

[lapsed				6/7/99.					
	Total:	Well	Well	Well	Well	Well	Well.	Well	Daio.
Tuite	Elapsed	PW !	OW	- AS	KD	27	28	50	Pressure
2430	3968	8 31 -	2 996	2 65:	2 897	0.862	0 983	1 073	0 40
2435	397:		3.003	2 656	2 901	0 866	0 966	1 076	0 41
2445 2445	3978	8 ;:	3 006	2 661	2 904	0 869	0.59	1079	0 4
2450	3983	8 255	3 006	2 664	2 904	0 872	0 993	1.079	04
2455	1993	8 317	3,006	2 664	2 904	0 875	0 643	1.082	.0 4
2460	3993	8 342	3,009	2 664	2 507	0 869	0,99	1 085	0.4
2465	4031	8 373	3.006	2 66 7	2 907	0 875	0 996	1.092	0 4
2470	4008	8 349	3 656	2 667	2 904 2 907	5 559	0.88	1.688	0.4
2475	4013	8 308	3 006	2 667	2 907	0 866	0 99	1.079	0.4
2480	4018	6 308	3 006	2 66 7	2 907	0 862	.0 583	1 082	0.4
2485	4023	8 323	3 006	2 66	2 91	0 869	0 993	1 085	0 4
2490	4028	8 336	3 006	2 667	2.91	0 869	0 993	1 082	04
2455	4033	6 101	3.006	2 667	2 907	0 866	0 99	1.097	0.4
2500	4038	8 358	3 003	2 667	2 907	0 862	0 986	10/6	04
2505	4043	8 33	3 003	2 667	2 907	0 869	0 993	1,076	04
2510	4046	6 317	3 003	2 66 4	2 907	0 866	0 99	1.076	04
2515	4051	313	3 003	2 667	2 91	0 869		1 075	- 64
2520	4058	8 3.23	3 006	267	2913	0 881	0 559	1 085	04
2525	4063	8 314	3 006	267	2 913	0 861	- 6556	1 086	- 0
2530	4068	8 365	3 00%	67	2913	0 881	1 003	.1 088	:
2535	4073	8 317	3 00 8	26/4	2 916	0 885	1 002	1 05	- 64
2540	4078	6 345	3 005	2674	2 916	0 885	1 002	1 095	04
2545	4083	8 35.8	3 GO ÷	2 674	2 916	0 875	0 993	1 095	8
2550	4584	8 368	3 006	267	2913	0 875	2 996	1 088	0.4
2555	409 :	8 333	3 603	2 67	2 913	0 872	-0.55	1 082	0.4
2566 2565	4058	8 145	3 003	267	2 916	0 875	0 996	1 085	0.4
2570	4108	8 37 1	3 003	267	2 913	0 875	0.996	1 082	0.4
2575	4113	8 364	3 003	2 674	2916	0 875	0.596	1 088	0.4
566	4118	B 345	3 003	2674	2 916	0 8 / 5	0.956	1 09.	0.4
2585	4121		 -1-	2 667	2 913	0 862	0 95	1 08.	0.4
2590	4128	8 38	2 996	2 67	2 913	0 859	0.986	1 08.	04
2595		8 323	3 003	2.67	2 913	0.800	0.4×3	1 08.	0.4
2600	4136	8 342	3 005	267	2 9 1 6	0.875	0.999	1 082	0:4
2605	4143	8 145	3 000	2 674 2 674	7 92	0.875	1.605	1 085	0:4
2610	4148	8 356	3 003	2674	7 92 2 92	0.875	1.00	1 085	0/4
2615	4153	6 345	3 003	2674		0.875	1 005	1 088	0:4
26:0	4156	6 342	3 603	2674	2 92 2 92	0.875	1 002	1 085	0.4
2625	4163	8 342	3.003	2674		0 875	0 959	1 095	0:4
2630	4165	8 335		2674	2 92	0 875	1.002	1 093	0:4
2635	4171	8 37.7	 jl-	2674		0.869	0 999	1 092	04
2640	4178	8 374	3 003	26/4	2 925	0.875	1 005	1 082	0.4
2645	4163	63)7	3 003	2677	2 926	0 672	1 003	1 092	0.4
2650	4185	0.355	3 003	2674	2 923	6 6 72	1 002	1 076	0.4
7655	4193	0 349	3 003	2 677	2 926	0 888	018	1 104	0.4
2660	4198	8-336	3	2 67.7	2 9	0.878	1.009	1 095	0.4
7665 7670	4203	8 349	3 003	2677	2 926	0 872	1 005	1 088	0.4
2675	4211	8,361	3 003	2 68	2 926	0 891	1 021	1 058	0.5
2680	4218	8 345		2 677	2 92 1	0.866	0 996	1 682	04
2685	4223	8 35 6	3 (03)	2 677	2 926	0.875	1 009	1 086	04
2690	4228	8 33	2 993	2674	2 52 1	0.865	1 002	1 682	0.4
2695		8317	2 996	2 677 2 674	2 92 4	0.878	1015	1 095	0'4
2700	4238	8 323	2 993	- 26/4 26/	921	0 866	1 005	1 082	0.4
2705	1241	8 364	2 996	267;	2 923	0 862	1 002	1 066	0.4
2715	1248	8 36 1	2 993	267	2 926	0 878	1018	1 058	0.4
27.15	4253	8 36 3	2 593	7674	2 9 2 6	0 669	1 609	1 055	0.4
2720	4256	8 342	2 926	26/4	2 929	0 003	1 015	1.G85	0.4

GeoSyntec Consultants

	Сон	istant Rate Aq	nfer Yest at 1	Well PW NL	industries Sile. P	edricktown. I	IJ. 7 June 199	9	
				6/7/99	14,20				
Elapsed	Total	Well	Well	Well	Well	Well	Well	Well	Baro.
27:75	Elapsed 4.263	PW	OW	KS	KD	27	26	80	Pressure
2730	4268	8 368	2 996	2 674	2 929	0.87.	1015	1 086	0.454
2/15	4273	8 361	2 993	2677	2 929	0 672	1015	1 101	0.4:1
2740	1276	8 345	2 996 2 996	2 677	2 929	0.855	1 000	1 679	0:46
2745	4283	8 366	2 993	2 674	2 929	9.80	1 005	1 079	0.479
2750	4288	8 37 1	2 993	2:67	2 929	0.850	1 002	1 065	0.479
2755	4293	8 345	2 996	2 677	2 929	0 85	003	1,076	0 47
2760	4298	8 377	2 996	2 677	2 932	0 862	1 015	1 682	0 464
2/65	4303	8 377	2 990	2677	2 932	0.859	1 012	1.088	0 475
2770	4308	8 355	2 993		2 932	0.86?	1018	1 065	0 47
2775			2 587	2 68	5 6 16	0.656	1 012	1,665	0.40
2/86	4318	8 2 5 5	2 381	2677	2976	0.856	1, 009	1 075	0 4
278s	4323	8 267	2 981		2 923	0.856	1 009	1 076	0 464
2796	4528	8 266	- 2 30 L		2 92	0 859	1.015	1 065	0 464
2795	4333	8 305	2 972	2 667	2 916	0.853	1 005	1 065	0 474
2800	4538	8 352	29/5	2.667	2916	0.859	1 012	1.08.	0 474
2605	4343	8 339	2 978	2 67	2 92	0.852	1/005	1 085	0 465
2810	4348	- 6 3231-	2 9 8 1		2 923	0 859	1 015	1 092	0 45 9
			2 981	267	2 9 2 6	0 86:	1 021	1:098	0 469
dep 3		- 6 333	2 961	2674	2 929	0.875	1.027	111	0 469
·	4353 001	8-22		, l.		T			
0 008	4353 0083		2 978	2 667	2 923	0.853	1012	1 085	0 464
0 0166	4353.0166	8 172	2 978	2 007	2.9.3	0.85	1 015	1 085	0 464
0 0755	4353.0166	8 084	2 978	₹67	2 923	0 853	1012	1.085	0 464
00333	4353 0133	7 999	2 978	2 667	2 92 1	0.853	1015	1,085	0 464
00416	4353 0416	7 905	2 975	2.667	2 92 1	r 85 i	1015	1 685	0 46 4
0.05		7 8.50	2 978	2 667	2 923	0 853	1015	1 634	0 46 4
0.0583	4353 05	7 757	2:978	2 667	2 9? 1	0 853	1:012	1 08:	0 46 4
0 0565	4353 0583	7 684	2 975	2 667	2,923	0 853	1012	1 085	0 464
0 075	4353 0666	7618	2 975	2 667	2 923	0 853	1 013	1 085	0 469
	4353,075	7558	2 975	2 67	2:923	0 853	1 015	1 065	0 464
0.0833	4353.0833	7:495	2 975	2.67	2 9 3	0 853	1.015	1 085	0 46
0 0916	4353 0916	7 4 3 5	2 97.	2 66 7	2 92	0 853	1015	1 535	0 464
0 1	4353-1	7 382	2 972	2.67	2 92	0 853	1015	1 08	0 46 4
0 100 1	4353 1083	7 325	2 969	267	2'916	0 853	1015	1 086	0 464
0 1100	4353 1166	7 269	2 969	2 667	2 9 16	0 85 3	1015	TOBA	0 46 1
0 135	4153 125	7 218	2 969	2 667	2 913	0.653	- i š id -	1 068	0 454
0 1333	4351 1333	7 165	2 566	2 667	2913	0 853	101:1	785	0 464
0 1416	4353 1416	7 114	2 966	2 667	2913	0 653	 i öli st-	1 085	
0 15	4353 15	7 05a	2 503	267	2.91	0 853	- 1 515	1 085	0 465
0-1563	4353 1581	7 007	2 959	2 667	291	0 853	- 1015	1 085	0 464
0 1666	4353 1660	6 954	2 956	2 667	2 90	0 853			0 404
0.175	4353,175	6 9	2 956	2 667	2.904	0 653	1015	1 085	0 464
0 1833	4353 1833	6 847	2 9531		2 904	0 853	1 015	1 .83	1
0.1916	4353 1916	6 79	2 95 -		2 501	0 853	1015	1 088	0.464
0.5	4353 2	6 74	- 29 41	26)	2 897		1015	1 085	0.464
0.2683	4353 2003	6 6 8 9		- 267	2 894	0.853	013	1 088	0 464
0 2 tee	4353,2166		2 944	267	2 894		1 015	1 Oue	0 464
0.225	4353 225	6 595	2 941	267		0,853	015	1 085	0 464
0.2333	4353 2333	6 547	2 9 3 8	267		0 853	1015	1 085	0,464
0 2416	4353 241b	6 503	2 9 35	267	2 866	2 856	1 013	1 088	0 469
0.75	4353,25	6 459	- 2 3 3 2 -	2 667	2 885	0.656	1015	380 1	0 464
0.7183	4353 2583	6 406	2 929	2 667	2 862	0 853	1 015	1.086	0.451
0.2666	4353-266b	 6 349	2 9 2 5	267	2 882	0.856	1015	1 065	0:464
0 2/5	4353 275	6 2 6 6	2.923		2 878	0.856	01'	7 035	0.464
0.2833	4353.2833	6 22 -	2919		7 0 7 5	0.856	015	1 088	0 464
0 2916	4353.2916	6757	2916		2 872	0 856	1 015	1 068	0 464
0.3	4353 3	6 094	2913	267	2 86 9	0.856	016	1.068	0 464
0.1043	4351 3083	- 5056 -			2 866	0.856	! . [1 068	0 464
0 316.0	4353 3100	3 565	2.904		2.863	0 856	1.015	1 055	0,464
		-2 302	2:904	2 67	2.859	0.856	1018	1 088	0 464

				6.7/99	14:20				
Elipsed	Total	Well	We)i	Well	Well	Well	Well	Viell	Baro
Time	Elapsed	PW	ow	KS	KD	27	26	SO	Pressur
0 325	4353 325	5 905	2 901	2 67	2 856	0.856	1 018	088	0.4
0 3333	4353 3333	5 8 4 5	2 896	2 67	2 853	0 856	1018	1 088	
D 35	4353,35	5.725	2 658	2 67	2 847	0.856	1018	1 088	0.
0 3666	4353 3666	5 6 1 5	2 679	2 67	2 8 3 7	0 859	1018	083	1 - 6:
0 3833	4353 3833	5.504	2 873	26:	2 8 3 1	0.859	1:018	1 065	0.
0.4	4353.4	5.4	2 864	267	2 824	0 859	1.018	1 668	
0.4166	4353 4166	5 3	2 855	267	2 815	0.659	1.021	1 086	- 0
0 4333	4353 4133	<u>2.762</u>	2 845	2 (-)	2 809	0.859	1 021	1 068	0
0.45	4353.45	5.10/	2 8 36	26/	2 759	0 859	1 021	1 068	- 0
0 4666	4353/4666	5 022	2 827	2667	2 19	0.859	1 021	1 688	0
0.4833	4353.4833	4 95	2 818	2 667	278	0.859	1 021	880 1	0
0.5	4353.5	4 65	2 608	2 667	2 771	0 859	1 021	1 052	-
0 5166	4353/5166	4:839	2 755	2 667	2 761	0.862	1 021	1 092	- i
0.5333	4351 5333	4 795	2 787	2 667	2 753	0.862	1 021	1 052	0
0.55	4353 55	4:754	2 781	2 667	2 745	0 862	1 021	1 092	- 8
0 5666	4353 5666	4.716	2766	2:667	2736	0 862	1 024	1 055	- 0
0 5833	4353,5833	4.676	2 759	2 667	2 726	0 862	1 024	1 092	
06	4353 6	4 6 15	2 75	2 664	2717	0 862	1 024	1 095	
06166	43536166	4.59	274	2 664		0.862			0:
06333	4353 6333	4:534	2 728	2 664	2 /01	0863	1 024	1 09:	
0 65	4353 65		2722	2661			1 0.4	1 09.	·
0 6565	4353 666E	- 11/4	2713		2 691	0 86.	1024	1 095	0
0 6833	4353 6: 13	- 357		2 6 6 4	2 685	0.862	1.024	1 095	0
0 0 0 7	4353 7	4313	2 703	2 66 1	2.675	0.862	1 024	1 092	0
0.7166	4353 /166	4 2 3 3 3	2 694	2 66 1	2 669	D 862	1 024	1 055	0
07333			2 688	2 66 1	2 66	0 862	1 024	1 095	ā
	4353 7333	4 244	2 679	2.661	2 65	0.863	1 024	1 095	0,
0.75	4353 75	4.215	.2 669	2.658	2.544	0.862	1 024	1 098	0
0 7666	4353 7666	4 184	2 663	2.656	2 6 3 4	0 862	1 024	1 095	0
0.7833	4353 7833	4.158	2 654	2 655	2 628	0 862	1 024	1 095	0
0.6	4353 8	.4 13	2 645	2 655	2618	0.863	1 024	1 098	0
0.8166	4353 8166	4 102	2:639	2 652	2612	0.862	1 024	1 095	0
0 8333	4353 8333	4 076	2 629	2 65.2	2 606	0.862	1 024	1 098	- 0
0.85	4353 85	4 051	2 623	2 6 4 8	2.596	0.862	1 024	1 695	- 0
0 8666	4353 8666	4 026	2614	2 6 4 8	2 59	0 862	1 021	1.095	- 6
0 8833	4353 8833	3.998	2 605	2646	2 58	0 8/-1-	1 024	1.058	- 6
0 9	4353.9	3 976	2 602	2 643	2.574	0 80.	1 021	1.096	
0 9166	4351 9166	3 947	2 592	7 643	2 568	0 859	1024		0
09333	4353 9333	3 922	2.586	2 639		0 863		1.058	0
0.95	4353 95	3 897	2577	7 6 16	2:561 2:555		1 021	1.076	0
0 9666	4353 9666	3 872	257			0.863	1 024	1,096	0
0 9833	4353 5833	3 843	2 565	2633	2,545	0 859	1 024	1 098	
- 0.30731	4354	3814		2 629	2 5 3 9	0.659	1 024	1 098	0
	4154.2		2 558	2 626	2:533	0 862	1 021	11098	0
	41544	340	2 478	2 585	2.451	0 856	1018	1.098	Ô
- 16	4154 6	3 285	2 40 7	2 5 3 b	2 377	0 853	1015	1,095	0
		3 137	2 345	2 484	2 317	0 853	1012	1 088	
	4354 8	3 001	2.296	2 437	1 2 26	0 853	1 012	1 065	0
7 2	4155	2 764	2:247	2 387	2 209	0 853	1012	1 085	.0
24	4355 2	2 591	2 197	5 7 7 9	2 155	0 853	1012	1 085	0
	4 355 4	2 481	2 151	2 295	2 107	0 853	1 009	1.085	-0
26	4355 6	\$ 358		2 251	2 06	0.85	1 005	1.088	
2 8	4355 B	2 339	2011	2 21	2 022	0 85	1 002	1 086	ŏ
1	43.6	2 291	2 04	2 172	1 587	0.85	1 002	1 682	
2.5	4356 2	2 253	2012	2138	1 952	0 8 6 7	0 999	1 082	
3 4	43164	2 222	1 984	2 103	1 923	0 643	0 9 9 6	1 075	
3 6	4 356 6	2 193	1 566	2 071	1.895	0 84	0.99	1 076	- 0
3 8	4356 6	2 168	1 944	2 046	1 869	0 837	0 986	1:076	0
	4357	2-14	1 917	2018	1844	0 8 3 7	0 986	1.065	
4.5	4357 2	2 1.11	1 892	1 989 -	1 825	- 0 837	0 983		0
44	4357 4	2 692	187	1 967	1803	0 8 14	0 983	1.069	0

GeoSyntec Consultants

		A A A A A A A A A A A A A A A A A A A	mer rest at	West PVV, NL In	dustries Site. P	edricktown, l	4J,7 June 199	9	
Elapsed	Tutal	Well		6/7/99	14:20				
Tune	Elapsed	PW	Well	Well	V/ell	Well	Well	Well	Bato
4.6	4357 6	2 073	OW	KS	KD	27	28	sp	Pressur
1.8	4357 8	2 058	1 855	1 948	1 787	0.834	0 58	1 063	0.4
	4358	2 036	1 821	1 920	1760	0 851	0 977	1 057	04
52	43502		1.805	1 904	174	0 8 3 1	0 577	1 054	0.4
5.4	43584	2 004	1 75		1736	0834	0 567	i asi	0 4
56	4358 6	1988	1781	1 854	172	0 84	0 583	1:051	0.4
5.9	4358 8	1 976	1768	1 838	1704	0 64 1	0 963	1:051	0.4
6	4359	196	1 753		1.65,	0 0 3	0 586	1:047	0.4
6 2	4359 2	195	1744	1 825	1.679	0 853	0.99	1 047	0.4
64	43594	1 538 -	:/;;;;	1 6 -	1 666	0 85 3	0.89	1 051	0 4
66	4359 6	1 925	- (72)		1 657	0.859	0 99	1.651	0 4
6.6	4359 8	1913 -	· 	1776	1,647	0.662	0 593	1.057	0 4
/ 1-	4360	1 903	1,704	1.766	1 635	0 866	0.593	1 C66	Ď ě
72	4360 2	189	1691	1,756	1:625	0 869	0.956	1 073	0.4
74	4360.4	1 878	1682	1717	1616	0 872	0.996	1.07:	0.4
7.6	43606	1 868	1 676	1737	1/6/6	0 875	0.999	1 079	0 4
7.8	4360 8	1 859	1 667	1737	1 6	0 881	1 002	1 085	0.1
	4361	1846	1 657	1766	1 55	0 881	1 002	1 088	0 4
8.2	4361.2	1.837			1581	0 861	1 002	1 095	0.4
8.4	1161 4	- 1827 -	1 651	1 696	1571	0 685	002	1 098	0 4
	4 161 6		1642	1 684	1 562	0 881	0.567	1 104	0 4
- 6 6 -	43618		1633	1677	1 555	0 878	0 993	1 104	0.4
		1812	1 626	1 665	1 546	0 878	0.986	1 107	0 4
9:2	4362	1.802	1617	1 654	1 539	0 676	0 986	1 058	0.4
	4362.2	1791	1611	1649	1/53	0 878	0 996	1 683	0.4
3 6	4 362 4	1.783	1 602	1,639	1 523	0875	0 99	1 076	- 04
	43626	1774	1 596	1 63	1514	0 672	0 583	1 663	046
70		1767	1 589	1 62	1511	0 872		1 054	0 46
- 13	4363	1 761	1 583	1 62	1 504	0 875	0 583	1 051	0 4
	4365	1 682	1 522	1,579	1441	0.656	0 955	1 003	D 40
 ;}-	4367	1 622	1 472	1 52	1397	0 878	0 564	0 997	0.4
	4.369	1 565	1 426	1,469	1 352	0 847		0.946	0 46
18	.4371	1512	1 366	1 425	1311	0 85	091	0934	
26	4373	1 458	1:355	1 397	1 265	0 685	0 5 3 6	0 946	0.46
22	4375	1 42	1 324	1 355	1 254	0 665	0 91	0 3.5	0.4
	4377	1 389	1:256	1 324	1 225	0.866	0 901	0 a 7 7	-0.40
	4379	1 36 3	1,272	1 302	1,703	0 872	-0 501	- 6877	0 46
::	4381	1 335	1.247	1 28	1 184	0 688	- 6 554 -	0 881	0.46
30	4383	1 31	1,225	1 255	1.165	0 876	- 0.50	0.856	0 4
	4385	1:268	1 204	1233	1143	0 878	- 0 662	0 845	0.47
	4387	1 269	1 188	1 214	1126		- 0 891 -		0 47
36	4 389	1-241	1 167	1 193	1 108	0 872 -		0 871	0 46
38	4391	1 221	1 148		1 089	0 878	0 866	0 8 7	0 4
40	4393	1 202	1 13	1 154	1 076	0 888		9080	0 47
42	4395	1 187	7117	1138	1 663		0 869	0 808	0.47
44	4 197	1 171	1 102	1 122	1051	- 0 86a	0 857	0 808	0 47
16	4 199	1 152	1 086	100	855	- 688		0 811	0 47
48	4401	1 136	10/4	1 094	;;;;	0 891 -	0 85/	0.604	0 47
50	4403	1 12	1.062	1.081	- 662	0 888	0 644	0.347	0 47
5.7	4405	1 108	1 049	1 069		0 891	0 841	0 783	-0.47
3.4	4407	1 095	1 04	1 059	0 99	0 897		0 775	0 47
-56	4409	1 092	1,028	1.047	0981	0.894	0 841	0 782	-0.47
5e	4411	1 07	1.015	1034	0 968	0.898	0.835	0 776	0.47
60	4313	1 057	1 006	1 024	0 958		0 6 25	0 763	0.47
e;	4415	1051	0.997	1012	0 946	0 885	0.875	0 751	0.47
- 64	4417	1 015	- 0 585 -	1 502	0 9 19	0.884	0 816	0 /51	0 46
Éв	4419	-1 022		0 953	0 9 3 3	0 865	0 8 1 2	0 741	0 47
66	4421	1:013	0 565	0 987	0 924	0 685	0 866	0.738	0.47
-70	4421	1.004	0 50		0.924	0 891	0.812	0.735	0.47
								0 725	0 46

GeoSyntec Consultants

	Con	Stant Rate Aq	mer lest at t		dustries Site, P	edricklown, l	VJ. 7 June 195	9	
				6.7199					
Flagised Tune	Total	Well	Well	Well	Well	Well:	Well	Well	Baro
74	Elapsed 4427	PW 0 985	ow	KS	KD	21	26	SD	Pressu
76	4129		0 944	0 958	0 901	0 878	0 79	0.716	. 0
78	- 4451	0 966	0 9 26	0 942	0 897	0 881	0 793	0 722	0.0
Bru	4433	0 959		- 655	0 882	0 666	0 793	0.719	0.0
62	4435	0.953	0913	0 927	0 873	0 875	0 781	0 7 i 0 7 i i	0.4
84	4437	0 944	0 907	0 92	0 866	0 875	0 776	0.703	. 0
86	4439	0.937	0 904	0.914	0 863	0 675	0 778	0719	0
88	4441	0.926	0 895	0 905	0 854	0 891	073	0 707	0
90	4443	0 921	0 889	0 901	0 851	0 800	0 762	0 684	0
92	4445	0516	0 883	0,895	0 844	0 862	0 755	0 662	
94 96	4445	0 915	0.679	0.883	0 8 3 8	0.866	0 759	0 669	
98	4451	0 906	0.873	0 88 1	0 835	0.866	0.755	0 662	- 0
100		0 893	0 867	0.876	0.828	0:866	0:755	0 665	0
105	4456	0 88	0 849	0.87	0.625	0.866	0.752	0 662	0
110	4463	0 868	- 6835	0 864	0 612	0 862	0 743	0 656	0
115	4468	0 855	0 827	0 8 35	0.806	0.856	0 737	0 665	0
120	4473	0 843	0815		0 784	0 806	074	0 659	0.
125	4478	0 833	0 808	- 0016	0 /74	0 859	0.733	0 65	0:
130	4483	0 824	0 799	0 807	0 768	0 853	0 724	0634	0
135	4488	0 814	079	- 1er 0	0.758	0 651	0721	0 6 34	0 4
140	4493	0 802	6771	0 788	0 752	0 841	0711	0 621	0
145	4458	0 792	8 771	0 776	0 746	0.84	0:708	0 624	0.4
150	4503	0 786	0.765	0 772	0739	0 831	0 702	0 615	0 -
155	4508	0 7.76	0 754	0 766	0733	0.834	0 702	0 615	0 4
160	4513	0 767	0.75	0 756	0.724	0815	0 683	0:	0.
155	4518	0 76	0 741	0 7.47	0 717	0 812	0 676	0.59	- 0
170	4523	0 754	0 737	0 744	0714	0815	0 68	0.587	- 0
175	4528	0748	1 734	0 737	0.708	0.818	0 683	0 59	- 07
180	4533	0 745	0:726	0 734	0 /04	0.016	0 683	0 593	
185	4538	0 7 38	0 722	0 726	0 701	0 809	0 67	0 59	0
190	4543	0 732	0719	0 725	0.698	0 806	0 667	0 577	- ō
200	4548	0 729	0716	0 7,19	0 692	0 809	0 667	0 567	0.
205	4558	0 723	071	0 7.15	0 689	0 806	0 667	0.56	0.0
216	4563	0713	0 701	.0 709	0 685	0.6	0 664	0.58	- 0.0
215	4568	- 671 -	0 697	0 706	0 682	0 806	D 664	0.57.7	0.4
220		0 704	0 691	0 703	0 676	0 799	0 66 1	0 58	0.4
225	4576		0691	0 693	0 671	0 796	0 654	0 574	0.4
230	4583	0 691	0 688 -	- 065	0 60	0 /91	0 654	0.5/1	0.4
235	4588	0 691	0 682	0 684	0 663	0787	0 648	0 568	0.6
240	4593	0 691	0.679	0681	0 66	0 783	0 648	0 564	0.4
245	4598	0 685	0 676	0 678	0 654	0 787	0.645	0 564	0.4
250	4603	0 682	0 673	- 6674 -	0 65	0.785	0 642	0.568	0.4
255	4608	0.678	0 67	0671	0 65	078	0618	0.568	- 04
260	4613	0672	0 666	06/1	0,647	0777	- 6635	0.561	
265	4618	0 6/2	0 663	0 665	0.644	0 777	0 632	0 558	63
270 275	4623	0 669	0 66	0.662	0.641	0 774	0 632	0 555	0.4
2/5	4628	0 666	0 657	0 662	0 6 3 8	0771	0 629	0 555	0.4
- Z85	4633	0 663	0 654	0.659	0 6 3 5	0 771	0 629	0 552	0.4
250	4643	0 656	0.651	0 652	0 6 3 5	0 768	0 626	0 552	-0 4
295	4648	0 653	0 648	0 649	0631	0.764	0.619	0.549	0.4
300	4653	0 65	0 645	0 646	0 6 2 8	0.761	0619	0 549	0.4
305	4658	6633 }-		0 646	0,625	0 761	0616	0 546	0.4
310	4663		0 6 3 6	0 64 1	0 622	0.758	0 616	0 546	0.4
315	4668	0641	0 6 3 6	0637	0 622	0:758	0613	0 542	0,4
320	4673	0641	0 6 3:	0637	0619	0 758	0 613	0 542	0.4
							0613	6 542	04

GeoSyntec Consultants

				4 77	ndustries Site, P	edik aluwii, r	june 19:	**	
Elapsed	Tutal	Well	Well		14 20				
lune	Elapsed	PW -	OW	Well KS	Well	Well	Well	Well	Baro.
336	4083	063/	0633	063)	KD	27	28	so	Pressure
315	4686	0634	0 6 2 9	063	0616	0.755	0613	0.546	0 44
340	4693	0631	0 626	- 663	0612	0.755	0 61	0 546	0 44
345	4698	0 628	0 626	0 627	0 612	0.755	061	0 546	0 44
350	4703	0 626	0 623	0.624	0 606	0.752	0 667	0.54	0.45
355	4705	0 625	0 62	0 621	0 606	0.749	0 604	0.542	0.45
360	4713	0 622	0 617	0618	0 603	0 745	0 604	0.542	0 45
36%	4718	0 622	0 617	0 621	0 603	0 745	0.6	0,519	0 46
370	4723	0 618	D 614	611	0 603	0745	0.6	(5.19	0 46
375	4728	0 616	0611	0614	0 597		0.6	6 539	0 46
360	4733	0,615	0611	0614		0 742 -	0 597	6 5 3 6	0 46
365	4736	0612	0611	0611	0 59 7	0 735	0 597	0:531	047
396	4743	0.612	0 608	0 608	0.593	0735	0 554	0 5 3 6	0 47
195	4748	0612	0 608	0 608	0 593	— " <i>"</i> 61-	0 557	0533	048
4(1)	4753	0.609	0.605	0 603	0.593	— ·-	0.54	0.53	0 4 9
405	4758	0.609	0.605	0 605	0 35		0 591	0 533	0 49
410	4763	0 606	0 602	0.605	0 587	0 733	0 5 5 1	0 533	0 49
415	4768	0.603	0 599	0 599	0:587	6755-	0 588	0.53	0 49
420	4773	0 603	0 598	0.599	0.584	0 733	0 588	0 2 3 3	0 50
425	4778	0 555	0.545	0.5%	0 584	0.73	0 585	0.5	
430	4781	0 556	0.593	0.556	0 581	0.727	0 565	63.27	0 50
435	4786	0:590	0.592	0:592	0.581	073	0 585	0 53	0.50
440	4793	0.553	0 589	0 592	0577	0 723	0 576		0 50
445	4798	0.587	0.586	0.556	0 574	0717	0 572	0 521	0 49
450	480)	0.58)	0 583	0 583	0 571	0 717	0.572		
456	4868	0.584	0 58	0 583	0.571	0717	0 572	0 514	0 49
400	4613	0.584	0.58	0.58	0.565	0714	0 565	0 5 1 7	0.49
465	4818	0.584	0 58	0.56	0 566	0714	0 169	6 7	- 575
.470	4623	0.577	0 577	0 577	0.565	0711	0.566	- ::	0 43
475	4828	0.577	0 574	0 573	0 565	0711	03.6	0311	
480	4833	0 574	0 574	0 573	0.562	0.708	0 10	0 514	0.48
485	4638	0 374	0 371	0.57	0 556	0 711	0 166	- 0 511	0.45
450	4843	0 571	0 571	0 57	0 558	0 708	0 563	0314	-0.45
495	4648	ő 568	0 568	0 542	0 555	0 704	0 555	0 508	0 48
500	4853	0.565	0.565	0 564	0 552	0 701	0 559	- 6 5 6 2	048
505	4858	0 565	0.565	0 564	0 552	0.701	0 556	0 508	0 45
510	4663	0 562	0 561	0 561	0 545	0 695	0 553	6 56:	0'47
	4866	0 562	0 558	0.558	0 546	0 695	0.55	0 501	047
524	4673	0 558	0.556	0 555	0 546	0 655	0 55	- 0 501	
5.75	4578	0 558	0.556	0.558	0 546	0 698	ŏ šš	0.466	
	4878 001	0 562	0:558	0.555	0 543	0 695	0555	0 501	0.47
16	4908	0 545	0 549	0.548	0 5 ie	0.665	0544	0 495	0 48
	49 16	0 5 3 9	0 54	0.411	053	0.66	0537	0 49.	
120	4958	0 5 3	0.528		0.52	0.673	0 528	0.486	0.47
	5028	0 521	0.521		0 514	0 666	0.521	0:479	0.47
	5028 5058	0 514	0.512	0.514	0.564	0 66	0515	0 47	0 47
!:: -	5088	0 506 0 496	0.566	0.507	0 458	0 654	0 509	0 467	0 47
:40]-	5116	0 495	0 497	0 501	0 492	0.647	0 502	0 46	0 46
		0 465	0 454	0 464	0 489	0 647	0.502	0 457	0 49
300	3178 -	6 363	0 487	0 1 1	0.485	0 6 18	0 49	0.451	0 47
330	5.06	0 465	0 487	0 466	0 482	0 641	0:496	0.457	0.49
360	5238	0 466	0 487	0 486	0.482	0641	0:496	0 457	0.51
396	5268	0 483	0 476	0 485	0 479	0.635	0 49	0.457	0 53
426	5256	0.479		0 482	0 475	0 635	0 49	0.457	0 55
450	5326	0 476	0 475	0 479	0/473	0 632	0 467	0 451	0.5
460	5358	047	0 472	0 476	0 465	0 629	0 483	0 451	0.5
	5386 -	04/	0 469	.0 473	6 406	0 625	0 483	0 451	0.58
	5416	0464	0 469	0 469	0.469	0 625	0.48	0 445	0.0
		U 4041	0.40	0 466	0 463	061	0 46 6	0 441	060

GeoSyntec Consultants

				6.7.99	dustries Sile, P	edite atomit, i	13, 7 June 131		~
lapsed	Total	Well	Well T	Well	Well	Well	Well	Well	
Tune	Elapsed	PW	OW	- KS	- NO			50	Pirson
57i.	5448	0 464	0.463	0 471	0:466	0625	0 453	0 445	0.6
600	5478	0.4	0 46	0 466	0 463	0 603	0 458	0 429	- 0.6
630	5508	0.4611	0:457	0 463	0 46	0613	0 466	0 441	06
660	5538	0.457	0.457	0 46	0 46	0 6 16	0 471	0 429	06
690	5568	0 454	0 45	0 46	0.45	0 6 15	0 474	0 426	06
720	5598	0 448	0 444	0.454	0 447	0619	0 477	0 435	
750	5628	0.448	0.441	0.454	0:447	061	0 461	0 426	0.5
780	5658	0 448	0 444	0 454	0 444	0 594	0 446	0.419	
610	2688	0 448	0 + 1	0.41	0.444	0 591	0 442	0 416	0 5
640	5718	0 445	0 441	0.45	0:444	0 591	0 442	0.413	0
670	5748	0 448	0 441	0.454	0 444	0.587	0 439	0 41	0.5
900	5778	0 445	0 441	0.45	0.441	0 597	0 446	0 407	0.5
930	5808 5838	0 445	0.436	0.45	0.436	0,578	0 43	0 407	0.4
990		0,446	0 444	0.45	D-441	0.581	0 4 36	0 41	0.4
1026	5858 5858	0 448	0 441	0.44	0 441	0 584	0 433	0 41	0.4
1056	2898	0.446	8441	0.45	0 441	0.584	0 436	0 41	0.4
1080	- "" -	0 451	0 444	0 454	0 441	0.581	0 433	0.416	0.4
1110	· II	0 446	0 441	0 454	0 444	0 575	0 427	0 416	0.4
!!!"	6018	0 446	0 441	0.45	0 44	0.572	0.42	0 413	0.4
, , ,	6048	- 0 446	0 441	0.45	0 441	0 568	0417	0413	0.4
1200	6078	0 451	0 441	0:45	0 441	0 508	0.42	0 413	0 3
1230	6108	- 0 454	0 447	0 454	0 444	0 575	0 423	0 419	0 3
1260	6138	0 454	0 447	0 454	0.444	0 572	0 427	0.429	6.3
1250	6168		0 453	0 454 0 457	0.447	0 578	0 43	0:429	J-1
1320	6158	0 454	0 447		0.45	0 584	0 435	0:441	0.4
1350	6228	0 451	0 444	045	0 447	0 576	0 433	0.435	0.4
1380	6258	0 445	- 6 441	0444	0 441	0 375	0 433	0:438	0 4
1410	6288	0445	0.438	0 441	0 435	- "2/3 0 378	0 427	0 425	0.4
1440	6318	- 6 3 32	0 435	0 4411 -	0 435	0 3/3	0 43	0.4.6	0.3
1470	.6348	0 445	0418		0 4 3 8	0 578	:0 427	0:429	0.4
1500	6378	0436			0 435		0 43	0.432	0.4
1530	6406	0 435	0 425	- 6 438 -	0 428	0 575	0 427	0.426	0.4
1560	64.16	0 435	0 425	0 432	0 428	0 568	0 417	0.422	0.3
1590	6465	0 132	0 426	0 428	0 428	0 572	0 423	0.422	0.4
1620	6498	0 432	0 4261	0 428	0 425	0 572	0.423	0:422	0.4
1650	6526	0 426	0 423	0 428	0 422	0 565	0.423	0.419	0.4
1680	6358	0 429	6423		0 422	0 568	0.417	0.419	0.4
1710	6588	- 6 4551 -	- 6 116		- 6160	0 562	0 4:	0 416	0.4
1740	Liii -	- 0 423 -	- 6115		0416	0 565	0414	0 41	0.3
1770	6648	0 423	0416	- 6415	0416	0 565	042	0 416	0 4
0081	6678	0 415	- 6 7 13	- 6316		0 563	- 841/1-	0 4 16	
1836	6708	0 416	041			0 565	- 6414	- 6415	0 3
1860	6718	0 423	0 416	0.422	ă iiel -	š l		0 419	0.4
1890	6768	0 419	0 41 1	0:415	0 412	0 5601	0 42	0 413	- 64
1920	6798	0 416	0.41	0.416	0 409	0 565	0.417	041	- 04
1950	6874	0 416	0.41	0.416	0 409	0 562	0417	0413	0.3
1980	6858	0,419	0 413	0 419	0 412	0 562	0414	04	04
2010	6000	0 416	0413	0.416	0 4 12	0 565	0 417	0.41	04
2040	6918	0 111	0 41	0:416	0 409	0 575	0.427	0.456	0 4
2070	6946	0.412	041	0:419	0 412	0 553	0 404	0.404	ō-4
	6978	D 419	0 413	0 419	0 416	0 565	0 42	0 397	04
2130	7608	0.423	0 419	0 428	0 422	Q 584	0 436	0'457	-04
2160	7036	0 4 16	0 41	0 416	0 412	0.54	0 395	0 385	04
2150	7068	0 413	0 407	0.415	0.412	0 549	0 404	0 413	0 4
2220	7090	0 423	Q 415	0.422	0:422	0.562	0 414	0 404	.04
2250 2280	7128	0 426 0 421	0.419	0 428	0:422	0 572	0 423	0.422	0 4
			0.419	0.425	0.419	0 562	0 414	0 4 3 7	0 4

GeoSyntec Consultants

1. 1. 1. 1. 1. 1. 1. 1.	COURSE STR				6/7/59	14.20		4		
Chapter PW OW RS NO P 18 SO Pic					Well	Well	Well	Wall	0.56	Baro
1710				- ow	KS	ко -				
2710 7246 0 432 0 426 0 478 0 447 0 553 0 441 0 442 0 442 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 442 0 426 0 445 0 442 0 426 0 445 0 442 0 426 0 445			0.426	0 423	0.428					Pressu
2400 22/8 04/6 04/9 04/2 04			0 432	0 426						٥
2440 7308 0 426 0 419 0 425 0 422 0 553 0 3416 0 415			0 426							0
2460 7338 0432 0426 6 136 0 235 0 0 250 0 138		7308	0 426	0419						0
2450 7366 0 429 0 425 0 435 0 437 0 437 0 437 0 437 0 437 0 438 0 449 1 441 0 441 1	2460	7,338	0 432							-0
2550 7396 0429 0427 0427 0427 0555 0411 0411 2550 7456 0429 0427 0556 0414 0411 2550 7456 0428 0428 0422 0566 0414 0411 2550 7456 0428 0428 0422 0566 0414 0411 2560 7456 0428 0427 0415 0557 0414 0416 2560 7456 0428 0427 0415 0557 0414 0416 2560 7456 0428 0427 0415 0557 0414 0416 2560 7456 0428 0427 0415 0557 0414 0416 2560 7456 0428 0427 0415 0555 0414 0416 2560 7456 0428 0428 0428 0428 0428 0428 0428 0428	2450	7368								0
2550 7428 0 073	2520	7358								. 0
2550 7458 0.475 0.475 0.422 0.462 0.562 0.414 0.413 0.415 0.415 0.425 0.447 0.562 0.414 0.413 0.416 0.415 0.412 0.555 0.411 0.415 0.415 0.415 0.415 0.415 0.415 0.415 0.412 0.555 0.411 0.415 0.415 0.415 0.415 0.415 0.415 0.555 0.411 0.415 0.415 0.415 0.415 0.415 0.415 0.555 0.411 0.415									0 413	0
1.0 1.0									0 413	0
1540								0.414	0 413	0
2-10								0.414	0 416	0
1750							0 559	0414	0413	
2730 7756 0423 0416 0422 0412 0555 0417 0415 2766 7668 0425 0425 0426 0426 0426 0427 0556 0427 0416 2766 7658 0429 0426 0426 0427 0556 0427 0416 2766 7658 0426 0426 0427 0556 0427 0416 2766 2766 7668 0426 0426 0427 0425 0568 0427 0415 2760 7668 0426 0426 0427 0425 0568 0427 0415 2760 7766 0426 0426 0427 0415 0568 0427 0415 2760 7766 0426 0427 0415 0427 0416 0562 0417 0415 2760 7766 0426 0427 0415 0427 0416 0562 0417 0415 2760 7766 0427 0415 0427 0416 0562 0417 0415 2760 7766 0427 0427 0427 0426 0427 0427 0427 0427 0427 0427 0427 0427						0.412	0 556	0 406		Ó
2750 7608 0 429 0 42) 0 425 0 415 0 568 0 427 0 416 2760 7658 0 429 0 426 0 428 0 427 0 419 0 568 0 427 0 419 0 419 0 410 0 419 0 41						0.412	0 555			- 5
2730 7668 0 426 0 427 0 428 0 427 0 568 0 427 0 426 0 428 0 427 0 568 0 427 0 416 0 567 0 7668 0 426 0 429 0 425 0 419 0 556 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0 416 0 567 0 427 0					0 425	0.419				
7790 7668 0 426 0 427 0 425 0 415 0 565 0 427 0 415 2 820 7 860 0 426 0 427 0 425 0 416 0 566 0 4477 0 425 2 886 0 7728 0 423 0 416 0 442 0 566 0 4477 0 445 2 966 7 7658 0 4477 0 4415 0 4416 0 4412 0 566 0 4417 0 4415 2 966 7 7658 0 4416 0 4413 0 4416 0 4412 0 566 0 4414 0 4415 2 966 0 4417 0 4416 0 4412 0 566 0 4414 0 4415 2 946 7 848 0 4416 0 441 0 4413 0 4405 0 566 0 4414 0 4415 2 946 7 848 0 441 0 400 0 441 0 400 0 566 0 4414 0 4415 0 441 0 4415 0 4415 0 4416 0 4417 0 4416 0 4417 0 4416 0 4417 0 4416 0 4417 0 4					0 428	0.422				
2850 7668 0 426 0 419 0 422 0 419 0 566 0 427 0 422 2 8850 7758 0 423 0 423 0 419 0 422 0 416 0 562 0 447 0 415 2 8850 7758 0 415 0 415 0 415 0 412 0 566 0 447 0 415 2 910 7768 0 413 0 440 0 413 0 446 0 555 0 411 0 41 1				0 423						
2850 7728 0 423 0 416 0 422 0 416 0 562 0 417 0 415 2 860 7758 0 415 0 417 0 415 2 910 7768 0 415 0 417 0 416 0 412 0 566 0 411 0 413 2 910 7768 0 415 0 407 0 413 0 406 0 556 0 411 0 413 2 910 7768 0 415 0 416 0 413 0 406 0 556 0 411 0 414 1 2 917 7 8 8 8 0 416 0 41 0 404 0 413 0 406 0 556 0 411 0 414 1 2 917 7 8 8 8 0 41 0 404 0 414 0 403 0 566 0 416 0 416 0 416 0 415 0 406 0 416			0 426	0 4 19						0
2880 7758 0415 0415 0416 0412 0562 0414 0415 2910 7768 0413 0407 0413 0406 0555 0414 0413 2940 7818 0416 041 0403 0405 0555 0414 0414 2970 7818 041 0404 041 0403 075 0408 0405 2970 7818 041 0404 041 0403 075 0408 0405 2970 7878 041 0404 041 0403 075 0408 0405 3560 7878 040 0404 0403 0355 0555 0408 0407 3660 7958 0407 0408 0403 0356 0555 0408 0407 3660 7958 0407 0408 0403 0356 0555 0408 0407 3660 7958 0407 0408 0403 0356 0555 0408 0408 3660 7958 0408 0358 04 0356 0555 0408 0408 3150 7958 0408 0358 04 0355 0555 0408 048 3150 8058 0408 0358 04 0355 0555 0408 04 3160 8058 0408 0358 04 0355 0555 0408 04 3160 8058 0407 0401 0403 04 0355 0555 0408 04 3210 8058 0407 0401 0403 04 0355 0555 0408 04 3210 8058 0407 0401 0403 04 0355 0555 0411 0407 3210 8058 041 0404 0405 0403 0555 0411 0407 3210 8078 041 0404 0405 0403 0555 0411 0407 3210 8078 041 0404 0405 0403 0555 0411 0407 3210 8078 041 0404 0405 0403 0555 0411 0413 3210 8026 041 0404 0405 0403 0555 0411 0413 3220 8226 041 0404 0405 0405 0555 0411 0413 3220 8226 041 0404 0406 0405 0555 0411 0413 3220 8226 041 0404 0406 0405 0555 0411 0413 3230 8260 041 0404 0406 0405 0555 0411 0413 3250 8260 041 0404 0406 0405 0555 0411 0413 3250 8260 041 0404 0406 0405 0555 0411 0413 3250 8260 041 0404 0406 0405 0555 0411 0413 3250 8260 041 0404 0406 0405 0555 0411 0413 3250 8260 041 0404 0406 0405 0555 0411 0413 3250 8260 041 0404 0406 0405 0405 0555 0			0 423							0
2910		7758								0
1940 7616	2910									:0
1976										0
3000									0.41	
1016								0.408	0 407	0
1566							0.556	0 408	0 407	
100 100							0 549	D 404	0 404	-0
1900 1908 0.404 0.356 0.4 0.356 0.545 0.40 0.4 0.555 0.401 0.4 0.4 0.555 0.4 0.4 0.555 0.4 0.4 0.555 0.4 0.4 0.555 0.4 0.4 0.555 0.4 0.4 0.555 0.4 0.4 0.555 0.4 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5						0 356	0.553			-0
11:0 7998 0 401 0 399 0 4 0 393 0 545 0 400 0 4 11:0 8028 0 400 4 0 399 0 4 0 393 0 545 0 400 0 4 11:0 8028 0 400 4 0 399 0 4 0 393 0 555 0 400 0 4 11:0 8028 0 407 0 401 0 403 0 4 0 555 0 411 0 407 12:0 8148 0 407 0 401 0 406 0 406 0 403 0 555 0 411 0 407 12:0 8148 0 41 0 404 0 406 0 403 0 555 0 411 0 407 13:0 8178 0 41 0 404 0 405 0 403 0 555 0 411 0 413 13:0 8208 0 41 0 404 0 405 0 403 0 555 0 411 0 413 13:0 8208 0 41 0 404 0 405 0 403 0 555 0 411 0 413 13:0 8208 0 41 0 404 0 405 0 403 0 555 0 411 0 413 13:0 8208 0 41 0 404 0 405 0 403 0 555 0 411 0 413 13:0 8208 0 41 0 404 0 405 0 403 0 555 0 417 0 413 13:0 8208 0 41 0 404 0 405 0 403 0 555 0 417 0 413 13:0 8258 0 41 0 404 0 406 0 400 0 405 0 407 0 555 13:0 8258 0 41 0 404 0 406 0 400 0 555 0 417 0 413 13:0 8258 0 41 0 404 0 406 0 400 0 555 0 417 0 413 13:0 8258 0 41 0 404 0 406 0 400 0 555 0 417 0 413 13:0 8258 0 41 0 404 0 406 0 400 0 555 0 417 0 413 13:0 8258 0 41 0 404 0 406 0 400 0 555 0 417 0 413 13:0 8258 0 407 0 404 0 406 0 400 0 555 0 417 0 407 13:0 8158 0 407 0 404 0 406 0 400 0 555 0 417 0 407 13:0 8158 0 407 0 404 0 406 0 400 0 555 0 417 0 407 13:0 8168 0 407 0 404 0 406 0 400 0 555 0 417 0 407 13:0 8168 0 407 0 404 0 406 0 400 0 555 0 417 0 407 13:0 8168 0 407 0 404 0 406 0 400 0 555 0 417 0 407 13:0 8168 0 407 0 404 0 406 0 400 0 555 0 417 0 407 13:0 8168 0 407 0 401 0 403 0 556 0 556 0 408 0 404 13:0 8168 0 407 0 401 0 403 0 556 0 556 0 408 0 404 13:0 8168 0 407 0 401 0 406 0 405 0 556 0 417 0 554 13:0 856 0 400 0 405 0 555 0 556 0 408 0 406 13:0 856 0 536 0 407 0 401 0 405 0 556 0 556 0 417 0 556 13:0 856 0 400 0 555 0 557 0 556 0 417 0 411 13:0 856 0 556 0 500 0 555 0 500 0 556 0 556 0 500 0 556 13:0 856 0 500 0 500 0 500 0 556 0 556 0 500 0 556 0 556 0 500 0					0.4	0 396	0.549			
1150					0.4	0 393				- 0
1860 805.6 0.404 0.396 0.4 0.395 0.555 0.404 0.404 1246 8068 0.407 0.401 0.405 0.40 0.555 0.411 0.407 1246 8118 0.407 0.401 0.405 0.40 0.555 0.411 0.407 1270 8148 0.41 0.407 0.405 0.406 0.405 0.565 0.417 0.415 1370 8178 0.41 0.404 0.406 0.405 0.555 0.414 0.415 1370 8208 0.41 0.404 0.406 0.401 0.555 0.414 0.415 1370 8208 0.41 0.404 0.406 0.401 0.555 0.414 0.413 1380 8208 0.41 0.404 0.406 0.401 0.555 0.417 0.413 1380 8256 0.41 0.404 0.406 0.401 0.555 0.417 0.413 1420 8256 0.41 0.404 0.406 0.400 0.565 0.417 0.413 1420 8256 0.41 0.404 0.406 0.400 0.565 0.417 0.413 1450 8378 0.41 0.404 0.406 0.400 0.565 0.417 0.413 1450 8378 0.41 0.404 0.406 0.400 0.565 0.417 0.413 1450 8378 0.41 0.404 0.406 0.400 0.565 0.417 0.413 1450 8378 0.407 0.404 0.406 0.400 0.565 0.417 0.413 1450 8388 0.407 0.404 0.406 0.400 0.565 0.417 0.413 1560 8448 0.41 0.404 0.406 0.400 0.565 0.417 0.413 1570 8488 0.40 0.404 0.406 0.400 0.565 0.417 0.413 1570 8488 0.40 0.404 0.406 0.400 0.565 0.408 0.404 1570 8488 0.40 0.404 0.406 0.400 0.565 0.414 0.544 1570 8488 0.40 0.404 0.406 0.400 0.565 0.414 0.544 1580 8588 0.407 0.401 0.403 0.405 0.555 0.408 0.565 1570 8488 0.401 0.404 0.406 0.400 0.565 0.414 0.44 1580 8588 0.407 0.401 0.403 0.405 0.565 0.414 0.44 1570 8586 0.407 0.401 0.403 0.405 0.555 0.408 0.555 1570 8586 0.407 0.401 0.403 0.405 0.555 0.408 0.555 1570 8586 0.407 0.401 0.403 0.405 0.555 0.408 0.555 1570 8586 0.407 0.401 0.401 0.404 0.555 0.555 0.408 0.555 0.555 1570 8586 0.407 0.4			0:404	0 398	- 64					
1113 8068 0 407 0 401 0 405 0 4 4 0 555 0 411 0 407 1 240 1			0:404	0 398	0.4					0
1246 8118 0 407 0 4 1 0 406 0 4 0 0 555 0 411 0 407 1 1 0 406 1 0 407 1 1 0 407 1 1 0 407 1 1 0 407 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 407	0 401						-0
2270 6146 041 0407 0405 0407 0555 0417 0417 3300 8778 041 0407 0405 0405 0405 040 0555 0417 0417 3300 8778 041 0407 0405 0405 040 0555 0417 0417 3300 8778 041 0407 0405 0405 0405 0555 0417 0413 3360 8778 041 0407 0406 0406 0400 0555 0417 0413 3360 8778 0417 0413 0407 0407 0407 0407 0407 0407 0407 040		8118	0 407	0 4 1						0
3100 8776 041 0406 0405 040 0555 0414 041 3150 8208 041 0406 0406 0400 0555 0414 041 3150 8208 041 0406 0406 0400 0555 0417 0413 3150 8208 041 0404 0406 0400 0555 0417 0413 3150 8258 041 0404 0406 0405 0555 0417 0413 3150 8258 041 0406 0406 0400 0555 0417 0413 3150 8258 041 0406 0406 0400 0555 0417 0413 3150 8258 041 0406 0406 0400 0555 0417 0413 3150 8158 0401 0404 0406 0400 0555 0417 0413 3160 8158 0401 0404 0406 0400 0555 0417 0413 3160 8158 0401 0404 0406 0400 0555 0417 0413 3160 8168 0404 0398 04 0398 0555 0417 0413 3160 8168 041 0404 0401 0401 0356 0555 0417 0413 3160 8168 041 0404 0401 0401 0356 0555 0417 0413 3160 8168 041 0404 0401 0401 0356 0555 0417 0413 3160 8168 041 0404 0400 0400 0555 0555 0417 0413 3160 8506 0401 0401 0403 0456 0401 0552 0414 04 3160 8506 0401 0401 0403 04 0552 0414 04 3160 8506 0401 0401 0403 04 0552 0414 04 3160 8506 0401 0401 0403 04 0555 0401 0401 0401 0401 0555 0410 0410	1270	8148	041							-0.
1310	3300	8178	041							0.3
3360 8236 041 0404 0406 0401 0565 0417 0413 1420 8256 0417 0413 1420 8256 041 0404 0406 0401 0565 0417 0413 1420 8256 041 0404 0406 0401 0565 0417 0413 1420 8256 041 0404 0406 0405 0565 0417 0413 1420 8256 041 0406 0406 0401 0565 0417 0413 1450 8156 0407 0404 0406 0400 0565 0417 0411 1450 8156 0407 0404 0406 0400 0565 0417 0411 1450 8156 0407 0404 0406 0400 0565 0417 0411 1450 8156 0407 0404 0406 0400 0565 0417 0411 1450 0418 0418 0404 0400 0406 0401 0565 0417 0411 1450 0418 0404 0400 0400 0400 0565 0417 0411 1450 0418 0404 0400 0400 0400 0565 0417 0411 1450 0418 0418 0404 0400 0400 0400 0566 0555 0417 0554 1550 0406 0418 0404 0400 0400 0400 0566 0555 0417 0554 1550 0406 0408 0566 0555 0417 0554 1550 0406 0408 0566 0565 0417 0418 0418 0408 0408 0408 0408 0408 0408	3330								0 41	0.3
33:0								0 414	0413	O:
\$\frac{1}{250}\$ \$\frac{1}{0.55}\$ \$\frac{1}{0.41}\$ \$\frac{1}{0.40}\$ \$							0 565	0417	0 413	-0
1450							0 565	0417		0
1480						0 403	0 562	0 414		0
1860						0 403				0
1340 0488 0404 0398 0.4 0396 0.556 0.408 0.4				0.404	0:406					
1540				0 398						0
3570										0.
3600 8478 0 41 0 404 0 406 0 407 0 4			041							0
3610		8478	041							0 :
3.666		8508								0 :
100 100		8538								0 :
17/20										0
375 365	3770									0
1786 1865										0
Selio Selio D 375 D 376 D 386 D 374 D 334 D 389 D 372	3780								0 391	0
10 10 10 10 10 10 10 10								0.389	0 372	0.0
1876 8746 0347 0319 034 0316 0317 0327 0551 0362 0365 0414 0401 0401 0401 0401 0401 0401 040								0 417		- 00
3500 0740 0344 0339 034 0,336 0537 0392 0.365 3530 0392 0.365 3530 0392 0.365 3530 0392 0.365 3530 0392 0.365 3530 0392 0.365 3530 0392 0.365 0.							0 562			- 00
3900 9778 0337 0333 0331 0327 0543 0355 0365 3930 0365 3930 0365 3930 0365 3930 0365 3930 0365 3930 0365 3930 0365 3950 0365 3						0,336	0 537			- 0
3330 8600 0331 0324 0324 032 0516 0337 033 3560 8636 0337 033 0331 0327 0531 0385 0372 3590 8666 0341 0333 0334 0327 0531 0385 0372 6020 8686 0341 0333 0334 0327 0531 0385 0365 6020 8698 0341 0333 0334 0327 0531 0385 0365 6050 8698 0341 0333 0334 0337 0534 0375 0355										
3960 8838 0337 033 0331 0327 0531 0355 3960 0372 0351 0355 0365 0372 0351 0355 0365 0372 0351 0355 0365 0372 0351 0355 0365 0372 0351 0355 0365 0365 0375 0355 0365 0375 0355 0365 0375 0355 0365 0375 0355 0375 0355 0375 0375 0375 037				D 324	0 324					0 (
3990 8866 034 0333 0334 0357 0351 0365 0465 0466 0365 0365 0365 0365 0365 0365 0365 03				0.33	0 331					
4020 8898 0.341 0.333 0.334 0.33 0.554 0.375 0.365 0.365 0.365 0.365 0.365 0.337 0.333 0.554 0.375 0.325 0.365 0.375 0.335 0.554 0.375 0.3				0 333						0.0
4050 8928 0 344 0 336 0 337 0 333 0 534 0 389 0 372			0 341							0.0
4080 844 0 361 0 372	4050	8558								0.0
0 350 0 367 0 339 0 34 0 336 0 537 0 352 0 363	4086	8958	0 347	0 339	0 34	0 333				00

GeoSyntec Consultants .

					dustries Site, P	COIRCRIOWN: I	41, 7 June 19	19	
FC - C T				6/7/99					
Fine	Yotal Elapsed	Well	Well	Well	Well	Well	Well	Well	Baro
4110	8988	0 344	0 336	KS 0-337	KD 0.333	27	28	SD	Pressur
:4140	9018	0 344	0 339	0.337	0 333	0.531	0 365	0 376	0.0
4170	9048	0 344	0 339	- 6337		0 531	0 389	0 376	0.0
4200	9078	0 347	0 34.	0 14	0 336	0 537	0 392	0 3/8	- 0
4230	9108	0 347	0 342	0 34	0 336	0 534	0 385	0 381	
4260	9138	0.347	0-342	0 34	0 336	0534	0 389	0 378	- 00
4290	9168	0 344	0 339	0 337	0 333	0 531	0 385	0 375	0
4320	9198	0:344	0 339	0 337	0.333	0 527	0 385	0 372	
4350	9228	0.344	0 336	0.337	0 333	0:527	0 382	0 375	00
4360	9256	0.341	0 333	0 334	0 327	0 524	0 375	0 369	0.0
4410	9288	0.557	0 333	0 331	0 323	0.521	0.376	0 366	0.0
4470	9318	6334	0 33	0 328	0 323	0 521	0 376	0 362	-0
1500	93/6	0 337	0 333	0 331	0.323	0:524	0 379	0 366	0
4530	9408	0 334	0 333	0 331	0 327	0/521	0 376	0 366	0.0
4560	9438	0 334	0 327	0 328	0 323	0 518	0 376	0 359	0.1
4590	9166	- 6331	0.327	0:328	0 32	0.518	0.3	0 359	0.1
4620	9498	- '';;}-		0.328	0 32	0.515	0.31	0 359	0.1
4650	9528	0337	0333	0:328	0 12	0.518	0 373	0 359	0 1
4680	9558	0341	0.336	0 334	0.323	0.521	0 376	0 362	0.1
4710	9588	0341	0 336	0 331	0 327	0.524	0 382	0 366	0:1
4740	9618	0 34 1	0 336	0.334	0 327	0 521	0 179	0 365	0.1
4776	9648	0 344	0 339	0 337	0 333	0:521 0:518	0 179	0 362	0 1
4800	5678	0 344	0 339	034	0.333	0.527	0 376	0 362	0.1
4830	9708	0 344	0.342	034	0.336	0.524	0 385	0 369	0:1
4860	9738	0 347	0 745	0 346	0.342	0.54	0 358	0 362 0 372	0 1
4890	9768	0 344	— i	0 337	0.333	0 508	0 366	0 35	01
1 120	9798	0 344	0,339	0.34	0 3 36	0 531	0 389	0 375	01
4950	9828	0 344	0:342	0 346	0 336	0 543	0 401	0 381	0 1
4980	9858	0 347	0.342	0 34	0 339	0 521	0 379	0 35	
5016	9888	0 351	0 348	0 353	0.346	0 575	0 433	0.445	01
5040	9918	0 347	0 34	0 346	0,339	0 508	0 366	0 34	. 01
5070	9948	0 347	0 342	0 346	0 339	0 524	0 379	0 356	0 1
5100	9978	0 347	0 34?	0 343	0 339	0 508	0 366	0 328	0 1
5130	10008	0 347	0.342	0.35	0 342	0 499	0 357	0 344	0 2
5160 5190	10038	0 347	0 342	0.35	0 342	0 502	0 363	0 353	0.2
5220	83001	0.35	0 342	0 35	0 349	0 515	0 373	0 344	0.2
5250	10058	0.359	0 352	0 356	0 352	0 512	0 379	0 366	0 2
5280	10128	0 359	0 355	0 362	0 358	0 5 1 5	0 376	0 366	0.2
5310	10188	0 344	0 352	0 353	0 349	0 489	0 351	0:334	0 3
5340	10218	0334	0 336	0 34	0 339	0 486	0 351	0 34	0 3
5370	10248	0 306	0 296	0 337	0 33	0 512	0 376	0.381	0.3
5400	10278	0.284	0 274	0 296	0 295	0 493	0 357	0 347	0.3
5430	10308	0.271	0 762	0 2/1	0 269	0 489	0.351	0 35	0.4
546U	10138	6 258 -			0247	0 508	0 366	0 35	01
5490	10368	0.243	0231	0 227	0 228	0 512 -	0 365	0 359	0 3
5520	10398	0.221	0 209	0.205	0 206	0 502	0 354	0 356	0 3
5550	10428	0 208	0 197	0.192	0 193	0 502	0.354	0 347	0 3
5580	10458	0 195	0 185	0 179	0 181	0.496	0 347	0.337	. 03
5610	10486	0.169	0 179	0 176	0 171	0.502	0 354	0 34	03
564D	10518	0 18	0 169	0 167	0 161	0 499	0 351	0 337	83
5670	10548	0 17	0 16	0.154	0 152	0 489	0 341	0 328	7 7 3
5700	10578	0 167	0 157	0 151	0 149	0 489	0 338	0:326	- 63
5730 5760	10608	0 161	0 148	0 145	0 142	0 486	0 335	0:321	03
3750	10638	0 154	0 145	0 141	0 135	0 483	0 332	0:316	03
	10668	0154	0 145	0 141	0 139	0.483	0 332	0 316	0.3
5820	10698	0 154	0 145	0138	0 136	0 48	0 328	0 3.01	

Page 29

Page 30

					14:20				
Tune	Total	Well	Well	Well	Well	Vieli	Viet i	Well	Baro.
5880	Elapsed 10758	PW 0 154	OW	KS	KD	27	28	SD	Pressure
5910	10788	0 154	0 145 0 145	0 138	0 136	0.47	0 315	0,309	0.3
5940	10618	0 157	6146	0141	0 1 15	047	0 315	0 309	0 3
55/6	10818	0 157	ö i i i i	0 145	0 142	0 47	0 317	0 303	0.3
6600	10878	0 157	- 0 151	0 145		0 467	0 313	0 366	6 1
3103	10908	0 164	0 154	0 148	0 145	0 467	0 316	0.30e	0 3
ECEO	10938	0 164	0 157	0 151	0 152	0 464	7 316	0 309	02
6090	10568	0 17	0 163	0 157	0 158	047	::3:5	0 312	0.
6120	10998	0 173	0 166	0 157	0158	0.47	0316	0318	- 0
6180	11026	0 18	0 172	0 167	0 168	0 4 7 4	0.355	0 321	0
6210	11088		0.172	0 16/	0 165	0 47	0 316	0 321	
6240	11118	0189	0 182	0 179	0 174	0 403	0 3 32	0 334	0
6270	11146	0 185	0 185	- 6179	0 174	2 474	0 322	0.321	0
6300	11178	0 192	0.198	0 189	0 161	0 47	0 319	0 321	. 0
6330	11208	0 189	0 182	0 162	0 137	0 4tc	0 335 0 319	0 331	
6 160	11238	0 195	0 191	0 189	0 187	0 483	0 332	0 315	
6350	11268	0 155	0 191	0 189	0 187		0 366	0 328 0 303	0
6420	11298	0.206	0.201	0 205	02	0 486	0 338		
.6450	11328	0.208	0.2	0 205	0 156	048	0 328	0 35 0 334	0
6480	11358	0.217	0:209	0 208	0 206	0 47)	0 325	0 312	- 0
6516	1138t	0 211	0 203	0 208	0 201	0 47	0 315	0.312	
6540	11418	0.211	0 206	0 205	0 201	0461	0313	0 255	0
6570	11448	0214	0 206	0211	0 201	0 464	0 335	- 6 573	;;
6600	11478	0214	0.266	0211	0 206	0 464	0 309	0 315	
6630	11508	0 221	0 213	0:211	0 206	0 445	0.254	0.302	- 0
6695	11538	0 221	0 216	0 22	0 212	0 455	0 303	0 325	- 60
6726	11568	0 224	0 219	0.22	0 212	0 455	0 303	0 258	00
-6766-	11598	.0 21	0 225	0 227	0:219	0 455		0 315	0.0
6780	11658	0 2 16	0 228	0:23	0 222	0 458	U Sire	0.356	
6810 -	11688	0 243	0 231	0.23	0,225	0 439	0 287	0 325	
6840	11718	0 252	0 237	0.538	0 231	0 47	0 315	0 321	0
6870	11748	0 255	0 243	0 246	0.236	0 467	0 316	0 331	0
6500		0 262	0 256	249	0 241	0 47	0 316	0 334	0
6930	11608	0 265	0 256	0 255 0 255	0 247	0:474	0 322	0 34	0.0
6960	11838	0 266	0 262	0 261	0.25 0.254	0 474	6 319	0 33/	00
6990	11868	0 271	0 262	0 261	10 257	0 477	0 ;	0 344	0
7020	1 1898	0 271	0 262	0 261		048	0 326	0 147	0 (
7050	11928	0.274	0.268	0 264 -	0.26		0 326	0 347	
7080	11958	0 281	0 274	0 274	0 269	0 486 0 456	0 335	C 15.3	0.0
7110	11988	0 284	0 277	0 277	0 273	0 496	0 344	0 355	0.0
7140	12018	0 281	0.27.1	0 271	0 269	0.466	6 335	0 362	0.0
7170	12046	0 277	0.271	0 271	0 269	0 486		0 356	0.0
7200	12076	0 277	D:27.1	0.271	0 266	0 489	0 338	0 356	
	12108	0.277	0.2 1	0.271	0 269	0 483	0 338	0 356	 6
- 7:50 -	12168	0.284	0.277	0.274	0 276	0 455	0 347	0 356	
-7320 -	5 5		0 281	0.277	0 279	0.456	0 347	0 355	000
7356	- 13338 -	- 0 25 -	0 284	0 283	0.782	0 502	0 351	0 366	o
7380	12258	0.287	- 6 58 1 -	0277	0.275	0 499	0 347	0 362	-0
7410	12288	0 287	0 281	- 6277	0.279	0.490	0 344	0 359	0.0
7440	12318	0 284	0 281	0 274	0 275	0 496	0 344	0 159	0.0
7470	12348	0 28/	0 281	- 62/7	0 276	0 493	0 341	0 353	-0
7500	12378	0 293	- 0 287	0.283	5 565	0.496	0 344	0 353	-00
7530	12408	0 29	0 284	0 28	- 6 2 2 2	0 5051	3:11	0.359	0.0
7560	12438	0.293	0 287	0 283	0 265	0 505		0 359	0 0
7550	12466	0 296	0.29	0 287	0 288 -		6 354	0 362	0.0
	12498	0 299	0 293	0 293					

				6/1/39	14.20				
Elapsed	Total	Well PW	Well	Well	Well	Well	Well	Well	Baro
7411e 7650	Elapsed 12528	0 299	0W	KS 0 293	KD	27	28	SD	Pressu
7680	12556	0 303	0 299	0 293	0.295	0 512	0 357	0 366	0
7716	12588	0 303	0 299	0 299	0 298	0.512	0 36	0 369	0
774	12518	0 300	0 302	0 302	0 2011	0.518	0 366	0 366	0
7710	12648	0 306	0 299	0 296	0 295	0.508	0 357	0 375	0
7000	12678	0 306	0 302	0 299	0 298	0 508	0 357	0 362 0 359	0
7830	12708	ú 309	0.305	0 303	0 301	0 531	0 379	0 359	0
7860	12738	0 312	0 368	0 305	0 304	0 521	0 37	0 3/8	0
7890	12768	905 0	0 302	0.305	0 298	0 515	0366	0 369	- 0
7920	17798	0 105	0.305	0 102	0 304	0 4 1	- 6 154	0 337	
7950	12828	0 315	0 300	0315	0 304	0 4271	0 351	0 353	
7980	12: 1	0 315	0.31.1	0 312	0 304	0 496	0 347	0 34	0
8010	12868	0.318	0 314	0 321	0.311	0518	0 366	0 372	0
8040	12918	0.318	0 311	0 312	0 308	0 516	0 366	0 356	
8070	12948	0.3	0 314	0 316	0 311	0:505	0 357	0 359	
8100	17978	0 318	0.314	0 315	0 308	0 50.	0 351	0 34	
8130	13008	0 32.	0 314	0.324	0 314	0513	0 36	0 37.	
8160	13038	0 331	0 327	0 328	0 3.1	0512	0.36	0 366	
8190	13068	0 326	0.324	0 324	0.317	0 508	0 357	0 355	
8220	13056	0 331	0 324	0 328	0 32	0 499	0 351	0 35	
8250	13128	0 334	0 33	0 331	0 323	0 512	0.36	0 362	0
8280	13156	0 334	0.327	0 328	0 32	0 508	0 36	0 369	,
6310	13188	0 337	033	0331	0 323	0 512	0.36	0 366	
2.10	13218	0 341	0 336	0 334	0.323	0 515	0 363	0 372	 ö
6370	1:3248	0 344	0 339	0 337	0 33	0 518	0 37	0 378	
6400	13278	0 34 4	n 139	0 337	0 327	0516	0 366	0 378	
6430	13308	0 341	0.336	0 334	0 323	0515	0 363	0 375	. 0
8460	13338	0 337	0.333	0 334	0.323	0 515	0 363	0.375	
8490	13368	0 344	0 339	0 337	0 33	0.524	0 376	0 361	
8520	13398	0 15	0.345	0 343	0 333	0 331	0 3 7 9	0 388	
655.	13428	0 35	0,345	0 143	0 136	0 5 3 4	0 382	0 391	· · · · · ·
8580	13456	0.35	0 345	0 343	0 336	0 531	0 382	0 391	0
8610	13488	0 353	0.348	0 346	0 339	D 534	0 365	0 391	
8640	13518	0.35	0 345	0 343	0 333	0 527	0 376	0 388	
8670	13548	0):	0 345	0 337	0.336	0.54	0 389	0 385	. 0
8700	13578	0 356	0 35.	0 1	0 342	0 543	.0 392	0:397	
8730	13608	0 356	0 352	0 35	0 342	0543	0 392	0 394	
8760 8790	13638	0 353	0 346	0 346	0 339	0 5 3 7	0 365	0 394	
	13668	0 344	0 339	0 34	0 33	0 524	7 376	0 365	0
8820	13698	0 341	0 336	0 334	0 327	0 524	0 376	0 375	- 6
8850	13728	0 337	0 333	0 331	0.32	0.521	0 37	0 372	
8910	13758	0 337	0 336	0 334	0 323	0 524	0 373	0 375	ō
8940	13788	0 337	0 333	0 331	0.32	0 524	0 373	0 375	0
8970	13816	0 344	0 335	0 337	0 33	0 534	0 382	0 378	0
9500	38/8	0 347	0 342	0 34	0 33	0.537	D 385	.0 385	0
9030	- 13968	0 356	0 348	0 34 3	0 116	0.543	0.395	0.391	
9660	13938	0 356	0 352	0 346	0 1 19	0 546	0 395	0 394	0
9000	13568	0 356	0 355	0 353	0 342	0 546	0 355	0 391	0
9120	13998	0 353	0 352	0 35	0 346	0 549	0 398	0 154	
9150	14028	0 3561-	0 352	- 635	0 342	0 543	0.395	0 394	0
9180	14058	0 356	0 355	0 353	.0 346	0 546	0 395	0 391	
9210	14088	0 33	0 348	0 346	0 339	0 546	0 398	0:391	D
9240	14118 -	03 21	0 346	0 346	0 339	0 543	0 392	0 385	
9270			0 352	0 35	0 342	0 546	0 392	0 385	
9300	14178	0 356	0 355	0 353	0 346	0:534	0.759	0.385	0
9330	14208	0 363	0 361	0 359	0 353	0.534	0 382 0 395	0 375	- 0
9360	14236	0 36 3	0 361	0 359	0 352	0 549	0.398	0:386	0
9390	14268	0:369	0 364	0 362	0 355	0 556	0 404	0:384	

				ARM L AS LAT UP	dustries Site, P	editchiown, h	lJ, 7 June 199	9	
Elapsed	Total I			6/7/99 1	4:20				
Time	Elapsed	Well PW	Well	Well	Well	Well	Well	Well	Baro.
9420	14298	0 369	0 367	KS 0.362	KD	27	28	SD	Pressure
9450	14328	0 369	0 367	0.362	0 355	0 553	0 401	0 388	D 05
9480	14358	0 366	0.364	0 363	0 355	0 553	0 401	0 397	0.0
9510	14368	0 369	0 364	0 362	0 352 0 355	0 553	0 404	04	0.0
9540	14418	0 372	0 367	0 365	0 356	0 549	0 398	0 394	0 07
9570	14448	0 375	6 371	0 369	0 362	0 553	0 401	0 388	0.0
9600	14478	0 378	0.376	0 372	0 365	0 556	0 404	0.4	0.0
9630	14508	0 375	0 373	0 372	0 365	0 559 0 562	0 408	0 404	0.0
9660	14536	6 376	0 376	0.372	0 365	0 559	0 411	0 407	0.0
9690	14568	0 375	0 37	0 369	0:362	0 559	0 408	0.4	0 07
9720	14598	0 375	0 373	636 0	0 362	0 552	0 411	0404	0 07
9750	14628	0 378	0 373	0 369	0 365	0 565	0414	0 404	0.0
9780	14658	0 382	0 376	0 372	0 368	0 568	0.417	0 404	0.0
9810	14688	0.382	0 379	0 375	0 371	0 568	0.417	641	00
9840	14718	0.382	0 379	0 375	0.371	0 572	0.42	041	0 05
9870	14748	0 382	0 379	0 375	0 371	0 572	842	0413	00
9900	14778	0.362	0 379	0 375	0.371	0 566	0 417	0 407	0.02
9930	14808	0 385	0.382	0 378	0 374	0 575	0 423	0 413	0.0
9960	14838	0.388	0 385	0 381	0 377	0 581	0 43	0 416	0.0
9990	14868	0,385	0 385	0 378	0 377	0 578	0 427	0413	-0.01
10020	14898	0 388	0 389	D 381	0 381	0 581	043	0 4 19	-0 01
10050	14928	0 394	0 392	0 364	0 387	0 584	0 433		0.03
10080	14950	0.391	0 389	0 384	0 384	0 584	0 433	0 4 19	0 05
10110	14988	0.391	0 392	0 384	0 384	0 584		0 422	-0.05
10140	15018	0 391	0 389	0 384	0 384	0.584	0 433	0 419	0 06
10170	15048	0 388	0 389	0.381	0 384	0.581	0 433	0 419	0.0
10200	15078	0 388	0 389	0 381	0 384	0.581	0 433	0.419	-0 08
10230	15108	0 391	0 389	0 384	0 384	0:561	0.43	0.416	-00
10260	15138	0 388	0 385	0 3811	0 381	0.581	0.43	0.416	-0 09
10290	15168	0 388	0 365	0 378	0 361	0.578	0 43	0 416	0.0
10320	15198	0 388	0 389	0.381	0 384	0 584	0 427	0 413	0.0
.10350	15228	0 391	0 392	0 384	0 387	0 591	0 43	0 413	0 06
10380	15258	0 394	0 395	0 387	0 39		0 436	0 419	0.
10410	15288	0 397	0 398	0 391		0 594	0.442	0:426	0 12
10440	15318	0 401	0 401	0 394	0 393	D 597	0 446	0 426	-0'13
10470	15348	0 407	0 407	0 394	0 396	06	0 449	0 432	-0 16
10500	15378	0 407	0.407	0.397	84	0 606	0 452	0 438	-0 21
10530	15408	0 407	0 407	0.397	04	0 606	0 452	0 435	-0 23
10560	15438	0 407	0 407	- 83 	0.403	0 603	0.452	0 435	0 25
10590	15468	0 41	041	0 463	0 406	0 6031	0.452	0 438	-0 27
10620	15498	0.413	0413	0 406	0 409		0 458	0 438	-0 30
10650	15528	0.413	0 413	0 41		0 619	0.468	0 438	0 336
10680	15558	041	0 407	0 403	0 412	0 622	0.468	0 438	0 35
of data			- ' ''	0.403	0.403	0 613	0 461	0 454	0 36

Page 33

APPENDIX I

WATER LEVEL INDICATOR DATA TABLES

SUPPLEMENTARY AQUIFER TEST DATA

Constant Rate Aquifer Test at Well PW, 7 June 1999 NL INDUSTRIES

PEDRICKTOWN, NEW JERSEY

Date	Observa	tion Wei	is							WJEK					-			
	SD	SS	S4-1	T2-3	TC	T-4	T-A	os	OD	11	PD	BR	PS	PW	ow	KS	KD.	
6/7/99							<u> </u>									<u> </u>	KD	24
DTW:	7.15	6.11	5.20	6.76	7.25	7.31	7.58	7.63	8.33	5.41	6.85		£ 70	0.40				
Time:	1301	1302	1303	1304	1:305	1305	1306	1307	1307	1325	1312	5.50	5.72	6.18	6.49	6.04	6.27	17.5
	1							1001	1001	1,323	1312	1314	1326	1324	1324	1325	1326	1329
	na	na	5.50	6.82	7.28	7.36	7.63	7.68	8.37	5.45	6.88	5.54						
	na	na	1456	1506	1507	1509	1508	1525				5.54	5.76	na	na	8.15	8.52	17.5
						1303	1500	1525	1526	1538	1529	1532	1530	na	na	1730	1730	172
,	7.76	6.46	5.77	6.90	7.32	7:42	7.71	7.73	8.41	E 40	C 00							
·	1906	1:906	1907	1908	1909	1910		_		5.49	6.92	5.57	5.79	13.49	9.19	8.29	8.68	17.5
				1000	1303	1910	1911	1911	1912	1914	1915	1918	1916	2023	2021	2024	2025	203
	7.81	6.53	5.82	6.91	7.34	7.42	7.72	7.75	0.44	F								
	2126	2127	2128	2131	2134	2136	2135	2138	8.41	5.50	6.92	5.58	5.81	na	na	na	na:	na
6/8/99					2104	2130	2133	2136	2139	2142	2144	2148	2145	na	na	na	na-	na
	7.88	6.61	5:89	6.92	7.35	7.41	7.72	7.73	838	5.47	6.92		5.04					
	0537	0537	0538	0539	0540	0541	0541	0542	0542			5:57	5.81	13.70	9.28	8.28	na	17.5
į						0011	004,1	0342	0,542	0544	0546	0544	0548	0413	0415	0415	na	042
	7.90	6.62	5.92	6.95	7.38	7.45	7.75	7.79	8.42	5.50	6.95	5.59	E 00	•				
	1004	1005	1005	1007	1008	1009	1009	1010	1011	1013			5.92	na	na	8.47	8.88	17.5
							.0,00	10.0	1011	101,3	1014	1017	1016	na	na	1223	1223	1222
	7.82	6.56	5.87	6.96	7.40	7.51	7.79	7.84	8:49	5.55	6.98	E 0.4	5.00					
l	1701	1702	1703	1704	1704	1705	1705	1707	1707	1709		5.64	5.86	13.21	. 9.13	8.33	8.73	17.6
							1700	1707	1707	1709	1710	1713	1710	1659	1700	1727	1727	1230
li	7.97	6.69	6.00	7.01	7.43	7:52	7.82	7.89	8.50	5.57	7.01	5.67	E 00	40.40				
	2237	2238	2239	2242	2243	2245	2246	2247	2249	2252			5.88	13.48	9.26	8.45	8.87	17.7
	DTW =	depth to	water			; -		6671	443	2232	2253	2257	2254	2301	2303	2305	2306	2309

SUPPLEMENTARY AQUIFER TEST DATA Constant Rate Aquifer Test at Well PW, 7 June 1999 NL INDUSTRIES PEDRICKTOWN, NEW JERSEY

Date	Observa	tion Wel	ls				· · · · · · · · · · · · · · · · · · ·											
	SD	SS	S4-1	T2-3	TC	T-4	T-A	OS	OD	11	PD	BR	PS	PW	OW	KS	KD	
																	<u> </u>	24
6/9/99	7.99	6.76	6.03	6.90	7.44	7.57	7.85	7.85	8.49	5.59	7.00	5.66	5.87	13.61	9.29	8.48	0.04	47.00
ii	0531	0532	0533	0535	0536	0536	0536	0539	0540	0542	0543	0543	0543	0549	0530	0.46 0551	8.91	17.82
												45.0	O,O+1O	0543	0550	0551	0551	0554
!	na	na	na	na	na	na	ņa	na	na	na	na	na	na	13.64	9.31	na		
	na	na	na	na	na	na	na	na	na	na	na	na	na	1030	1030		na	na
													116	1000	1030	na	na	na
	8.04	6.82	6.07	6.92	7.48	7.60	7.89	7,93	8.54	5.62	7.06	5.70	5.92	13.69	9.32	9.64	0.12	47.76
	1156	1156	1157	1158	1159	1200	1201	1203	1203	1205	1206	1209	1208	1213		8.64	9.12	17.75
	1								,		1200	1203	1200	1213	1214	1310	1310	1225
	8.08	6.86	6.13	6.97	7.51	7.64	7.93	7.95	8.59	5.65	7.08	5.73	5.95	14.34	9.52	0.70	0.40	47.54
1	1635	1635	1636	1638	1639	1640	1640	1641	1641	1645	1646	1648	1647	1652	1653	8.70	9.18	17.64
					•						10.0	10-10	1047	1002	1003	1657	1656	1:700
	8.13	6.92	6.17	7.00	7.52	7.65	7.94	7.98	8.61	5.68	7.12	5.76	5.98	14.44	0.57	0.75		4=
1	2046	2046	2047	2056	2057	2058	2059	2101	2103	2105	2053	2051	2052		9.57	8.75	9.24	17.69
									_,	2:100	2000	2001	2032	2110 .	2111	2114	2115	2118
6/10/99	8.14	6.97	6.18	7:01	7.55	7.65	7.96	7.92	8.58	5.64	7.09	5.78	5.96	14.13	0.45			
ļ	0520	0521	0520	0523	0524	0525	0525	0527	0528	0530	0531	0534	0532		9.45	8.67	9.17	17.90
										00,00	0331	0004	USSZ	0537	0538	0539	0539	0543
	8.17	7.01	6.20	7.02	7.55	7.66	7.96	7.96	8.58	5.60	7.09	5.74	5.96	14.50	0.54	0.77	0.07	
<u> </u>	1324	1325	1325	1328	1329	1329	1330	1331	1332	1334	1335	1337	1335	1342	9.51 1342	8.77 1343	9.27 1344	17.92 1346

SUPPLEMENTARY AQUIFER TEST DATA Constant Rate Aquifer Test at Well PW, 7 June 1999 NL INDUSTRIES

PEDRICKTOWN, NEW JERSEY

Date	Observation Wells														
	JD	JS	10R	ID	IS	HD	нѕ	28	27	30	29	32	31	RD	RS
6/7/99	7.48	7.38	17.31	10.55	8.19	13.65	13.80	10.92	11.07	11.13	10.79	9.77	9.21	9.58	7.42
	1329	1330	1335	1338	1338	1341	1342	1340	1341	1343	1343	1346	1347	1346	1347
	7.52	7.43	17.28	10.56	8.21	13.67	13.81	11.38	11.47	11.15	10.88	9.81	9.24	na	na
	1728	1728	1736	17.56	1756	1753	1752	1739	1740	1743	1743	1748	1748	na	na
	7.56	7.46	17.27	10.58	8.23	13.70	13.84	11.49	11,58	11.18	10.91	9.82	9.26	9.61	7.44
	2031	2032	2040	2041	2042	2045	2046	2104	2103	2059	2100	2055	2053	2109	2111
	na	na	na	na	na	na	na	na	na	na	na	na			
	na	na	na	na	na	na	na	na	na	na	na	na	na na	na na	na na
6/8/99	7.60	7.49	17.28	10.60	5.22	13.71	13.84	11.58	11.72	11.20	10.91	9.81	0.26	0.64	7.44
	0424	0423	0427	0429	0430	0436	0437	0455	0457	0451	0458	0448	9.26 0447	9.61 0447	7.44 0443
	7.64	7.59	17.35	10.63	8.25	13.72	13.86	11.65	11.73	11.22	10.96	9.84	. 0.27	0.00	7.40
	1229	1228	1231	1233	1234	1236	1237	1250	1249	1248	1247	1244	9.27 1244	9.62 1241	7.46 1241
	7.68	7.58	17.41	10.65	8.30	13.76	13.89	11.62	11.70	11.23	10.97	0.00	,	0.00	
	1731	1731	1735	1736	1737	1740	1740	1751	1751	1748	1749	9.88 1746	9,31 1746	9.69 1743	7.49 1744
	7.70	7.60	17.53	10.69	8.31	13.80	13.93	11.71	11.79	11.26	10.99	0.00	0.04	0.07	
	2311	2312	2314	2316	2317	2320	2322	2340	2339	2335	2337	9.90 2332	9.31 2331	9.67 2326	na na

SUPPLEMENTARY AQUIFER TEST DATA

Constant Rate Aquifer Test at Well PW, 7 June 1999 NL INDUSTRIES

PEDRICKTOWN, NEW JERSEY

Date	Observation Wells														
	JD	JS	10R	ID	IS	HD	нѕ	28	27	30	29	32	31	RD	RS
										-				7	
6/9/99	7.73	7.62	17:58	10.71	8.32	13.82	13.95	11.76	11.85	11:27	11.03	9.89	9,33	9.70	7.49
,	0555	0555	0557	0559	0600	0603	0602	0615	0614	0612	0613	0609	0609	0606	0607
!	na	na	na	na	na	na	na	na	na	na	na	na	na	na	па
	na	na	ла	na	na	na	na	na	na	na	na	na	na	na	na
	7.79	7.69	17.51	10.74	8.37	13.83	13.97	11.81	11.89	11.31	11.04	9.93	9.35	9.71	7.51
	1227	1227	1229	1232	1232	1236	1236	1251	1251	1247	1247	1244	1244	1239	1238
	7.81	7.72	17.41	10.75	8.38	13.84	13.97	11.85	11.93	11.32	11.05	9.96	9.36	9.71	7.51
,	1700	1701	1703	1705	1705	1708	1708	1722	1722	1719	1720	1716	1715	1712	1712
	7.85	7.74	17.44	10.79	8.41	13.88	14.02	11.90	11.98	11.34	11.08	9.97	9.39	9.73	7.52
	2121	2122	2125	2127	2128	2132	2133	2153	2152	2148	2149	2144	2142	2137	2138
6/10/99	7.89	7.81	17.66	10.82	8.42	13.90	14.03	11.93	12.01	11.37	11.11	9.98	9.38	9.76	7.56
	0544	0544	0547	0549	0550	0610	0610	0711	0710	0708	0709	0706	0705	0702	0702
	7.91	7.82	17.67	10.83	8:43	13.89	14.03	11.96	12.03	11.36	11.10	9.97	9.40	9.77	7 57
	1347	1347	1349	1350	1351	1353	13.53	1404	1403	1401	1402	1400	13.58	9.77 1356	7.57 1357

